Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(16): 3427-3442.e22, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421949

RESUMO

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Ligação Proteica , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
PLoS Biol ; 21(7): e3002182, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410798

RESUMO

The viral hemagglutinins of conventional influenza A viruses (IAVs) bind to sialylated glycans on host cell surfaces for attachment and subsequent infection. In contrast, hemagglutinins of bat-derived IAVs target major histocompatibility complex class II (MHC-II) for cell entry. MHC-II proteins from various vertebrate species can facilitate infection with the bat IAV H18N11. Yet, it has been difficult to biochemically determine the H18:MHC-II binding. Here, we followed a different approach and generated MHC-II chimeras from the human leukocyte antigen DR (HLA-DR), which supports H18-mediated entry, and the nonclassical MHC-II molecule HLA-DM, which does not. In this context, viral entry was supported only by a chimera containing the HLA-DR α1, α2, and ß1 domains. Subsequent modeling of the H18:HLA-DR interaction identified the α2 domain as central for this interaction. Further mutational analyses revealed highly conserved amino acids within loop 4 (N149) and ß-sheet 6 (V190) of the α2 domain as critical for virus entry. This suggests that conserved residues in the α1, α2, and ß1 domains of MHC-II mediate H18-binding and virus propagation. The conservation of MHC-II amino acids, which are critical for H18N11 binding, may explain the broad species specificity of this virus.


Assuntos
Quirópteros , Vírus da Influenza A , Animais , Humanos , Aminoácidos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA-DR/metabolismo , Antígenos HLA
3.
Nature ; 588(7837): 327-330, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32942285

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413-15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Fusão de Membrana/fisiologia , Ligação Proteica , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Microscopia Crioeletrônica , Furina/metabolismo , Humanos , Modelos Moleculares , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Receptores de Coronavírus/química , Receptores de Coronavírus/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura
4.
Semin Immunol ; 55: 101507, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34716096

RESUMO

Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Humanos , Imunidade Humoral
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579792

RESUMO

The majority of currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses have mutant spike glycoproteins that contain the D614G substitution. Several studies have suggested that spikes with this substitution are associated with higher virus infectivity. We use cryo-electron microscopy to compare G614 and D614 spikes and show that the G614 mutant spike adopts a range of more open conformations that may facilitate binding to the SARS-CoV-2 receptor, ACE2, and the subsequent structural rearrangements required for viral membrane fusion.


Assuntos
COVID-19/virologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Microscopia Crioeletrônica , Humanos , Conformação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
6.
Eur Arch Psychiatry Clin Neurosci ; 270(4): 451-459, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31119377

RESUMO

Pharmacological inhibition of phosphodiesterase 10A (PDE10A) is being investigated as a treatment option in schizophrenia. PDE10A acts postsynaptically on striatal dopamine signaling by regulating neuronal excitability through its inhibition of cyclic adenosine monophosphate (cAMP), and we recently found it to be reduced in schizophrenia compared to controls. Here, this finding of reduced PDE10A in schizophrenia was followed up in the same sample to investigate the effect of reduced striatal PDE10A on the neural and behavioral function of striatal and downstream basal ganglia regions. A positron emission tomography (PET) scan with the PDE10A ligand [11C]Lu AE92686 was performed, followed by a 6 min resting-state magnetic resonance imaging (MRI) scan in ten patients with schizophrenia. To assess the relationship between striatal function and neurophysiological and behavioral functioning, salience processing was assessed using a mismatch negativity paradigm, an auditory event-related electroencephalographic measure, episodic memory was assessed using the Rey auditory verbal learning test (RAVLT) and executive functioning using trail-making test B. Reduced striatal PDE10A was associated with increased amplitude of low-frequency fluctuations (ALFF) within the putamen and substantia nigra, respectively. Higher ALFF in the substantia nigra, in turn, was associated with lower episodic memory performance. The findings are in line with a role for PDE10A in striatal functioning, and suggest that reduced striatal PDE10A may contribute to cognitive symptoms in schizophrenia.


Assuntos
Disfunção Cognitiva , Putamen , Esquizofrenia , Substância Negra , Adolescente , Adulto , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Pessoa de Meia-Idade , Imagem Multimodal , Diester Fosfórico Hidrolases , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Putamen/enzimologia , Putamen/fisiopatologia , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/enzimologia , Esquizofrenia/fisiopatologia , Substância Negra/diagnóstico por imagem , Substância Negra/enzimologia , Substância Negra/fisiopatologia , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 114(14): 3637-3641, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325875

RESUMO

The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Algoritmos , Biologia Computacional/métodos , Funções Verossimilhança , Modelos Moleculares , Conformação Proteica , Razão Sinal-Ruído
8.
Mol Psychiatry ; 23(7): 1666-1673, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28507319

RESUMO

The development of tau-specific positron emission tomography (PET) tracers allows imaging in vivo the regional load of tau pathology in Alzheimer's disease (AD) and other tauopathies. Eighteen patients with baseline investigations enroled in a 17-month follow-up study, including 16 with AD (10 had mild cognitive impairment and a positive amyloid PET scan, that is, prodromal AD, and six had AD dementia) and two with corticobasal syndrome. All patients underwent PET scans with [18F]THK5317 (tau deposition) and [18F]FDG (glucose metabolism) at baseline and follow-up, neuropsychological assessment at baseline and follow-up and a scan with [11C]PIB (amyloid-ß deposition) at baseline only. At a group level, patients with AD (prodromal or dementia) showed unchanged [18F]THK5317 retention over time, in contrast to significant decreases in [18F]FDG uptake in temporoparietal areas. The pattern of changes in [18F]THK5317 retention was heterogeneous across all patients, with qualitative differences both between the two AD groups (prodromal and dementia) and among individual patients. High [18F]THK5317 retention was significantly associated over time with low episodic memory encoding scores, while low [18F]FDG uptake was significantly associated over time with both low global cognition and episodic memory encoding scores. Both patients with corticobasal syndrome had a negative [11C]PIB scan, high [18F]THK5317 retention with a different regional distribution from that in AD, and a homogeneous pattern of increased [18F]THK5317 retention in the basal ganglia over time. These findings highlight the heterogeneous propagation of tau pathology among patients with symptomatic AD, in contrast to the homogeneous changes seen in glucose metabolism, which better tracked clinical progression.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Demência/fisiopatologia , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/farmacologia , Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Demência/diagnóstico por imagem , Progressão da Doença , Feminino , Fluordesoxiglucose F18/metabolismo , Seguimentos , Glucose/metabolismo , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/farmacologia , Compostos Radiofarmacêuticos
9.
Org Biomol Chem ; 15(22): 4875-4881, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537303

RESUMO

A robust and high-yielding radiochemical synthesis of 11C-N-cyanobenzamides using a palladium-mediated aminocarbonylation with 11C-CO, aryl halides and cyanamide is described. The bidentate ligand 1,1'-bis(diphenylphosphino)ferrocene provided 11C-N-cyanobenzamides from aryl-iodides, bromides, triflates and even chlorides in 28-79% radiochemical yield after semi-preparative HPLC. To further highlight the utility of this method, novel 11C-N-cyanobenzamide analogs of flufenamic acid, meflanamic acid, dazoxiben and tamibarotene were synthesized in 34-71% radiochemical yields.


Assuntos
Benzamidas/síntese química , Cianamida/química , Hidrocarbonetos Halogenados/química , Paládio/química , Benzamidas/química , Estrutura Molecular
10.
Neuroradiology ; 58(2): 189-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26494461

RESUMO

INTRODUCTION: White matter (WM) analysis in neonatal brain magnetic resonance imaging (MRI) is challenging, as demonstrated by the issue of diffuse excessive high signal intensity (DEHSI). We evaluated the reliability of the radiologist's eye in this context. METHODS: Three experienced observers graded the WM signal intensity on axial T2-weighted 1.5T images from 60 different premature newborns on 2 occasions 4 weeks apart with a semi-quantitative classification under identical viewing conditions. RESULTS: The intra- and inter-observer correlation coefficients were fair to moderate (Fleiss' kappa between 0.21 and 0.60). CONCLUSION: This is a serious limitation of which we need to be aware, as it can lead to contradictory conclusions in the challenging context of term-equivalent age brain MRI in premature infants. These results highlight the need for a semiautomatic tool to help in objectively analyzing MRI signal intensity in the neonatal brain.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Variações Dependentes do Observador , Assistência Perinatal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Skeletal Radiol ; 44(6): 859-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25427786

RESUMO

Intravascular papillary endothelial hyperplasia (IPEH), also known as Masson's tumor, is a rare nonneoplastic vascular lesion caused by the abnormal proliferation of endothelial cells. Clinically and radiologically, IPEH presents as a soft tissue mass that may simulate and be mistaken for a sarcomatous tumor. There have been reports of this entity involving the skin or subcutaneous tissues in normal blood vessels and vascular malformations. Herein, we present the first reported case of Masson's tumor arising from an arteriovenous hemodialysis fistula. We emphasize the imaging features of this lesion and briefly discuss its pathophysiology.


Assuntos
Derivação Arteriovenosa Cirúrgica/efeitos adversos , Diálise Renal/efeitos adversos , Malformações Vasculares/diagnóstico , Idoso , Diagnóstico Diferencial , Feminino , Antebraço/diagnóstico por imagem , Antebraço/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Sarcoma/diagnóstico , Sarcoma/etiologia , Ultrassonografia/métodos
12.
Curr Opin Struct Biol ; 81: 102619, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285618

RESUMO

Spike glycoprotein of SARS-CoV-2 mediates viral entry into host cells by facilitating virus attachment and membrane fusion. ACE2 is the main receptor of SARS-CoV-2 and its interaction with spike has shaped the virus' emergence from an animal reservoir and subsequent evolution in the human host. Many structural studies on the spike:ACE2 interaction have provided insights into mechanisms driving viral evolution during the on-going pandemic. This review describes the molecular basis of spike binding to ACE2, outlines mechanisms that have optimised this interaction during viral evolution, and suggests directions for future research.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
RSC Adv ; 13(22): 15322-15326, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213341

RESUMO

We have developed broadly reactive aptamers against multiple variants by alternating the target between spike proteins from different SARS-CoV-2 variants during the selection process. In this process we have developed aptamers which can recognise all variants, from the original wild-type 'Wuhan' strain to Omicron, with high affinity (Kd values in the pM range).

14.
Nat Commun ; 14(1): 1421, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918534

RESUMO

SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/genética , Mutação
15.
Nat Commun ; 14(1): 1999, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037847

RESUMO

Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anticorpos Antivirais , Testes de Neutralização , Anticorpos Neutralizantes , Hospedeiro Imunocomprometido , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus
16.
ACS Cent Sci ; 9(3): 393-404, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968546

RESUMO

The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.

17.
Pediatr Radiol ; 47(5): 630, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28271217
18.
Structure ; 30(10): 1367-1368, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206735

RESUMO

In this issue of Structure, Lan and colleagues seek to identify regions on the ACE2 receptor and coronavirus spikes that are essential for the viral attachment. They achieve it through a detailed comparative analysis of the binding of coronaviruses NL63, SARS-CoV, and several SARS-CoV-2 variants with human and horse ACE2.


Assuntos
COVID-19 , Coronavirus Humano NL63 , Enzima de Conversão de Angiotensina 2 , Animais , Cavalos , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
19.
Nat Commun ; 13(1): 1178, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246509

RESUMO

Recently emerged variants of SARS-CoV-2 contain in their surface spike glycoproteins multiple substitutions associated with increased transmission and resistance to neutralising antibodies. We have examined the structure and receptor binding properties of spike proteins from the B.1.1.7 (Alpha) and B.1.351 (Beta) variants to better understand the evolution of the virus in humans. Spikes of both variants have the same mutation, N501Y, in the receptor-binding domains. This substitution confers tighter ACE2 binding, dependent on the common earlier substitution, D614G. Each variant spike has acquired other key changes in structure that likely impact virus pathogenesis. The spike from the Alpha variant is more stable against disruption upon binding ACE2 receptor than all other spikes studied. This feature is linked to the acquisition of a more basic substitution at the S1-S2 furin site (also observed for the variants of concern Delta, Kappa, and Omicron) which allows for near-complete cleavage. In the Beta variant spike, the presence of a new substitution, K417N (also observed in the Omicron variant), in combination with the D614G, stabilises a more open spike trimer, a conformation required for receptor binding. Our observations suggest ways these viruses have evolved to achieve greater transmissibility in humans.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Mutação de Sentido Incorreto , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/ultraestrutura , Sítios de Ligação/genética , COVID-19/transmissão , COVID-19/virologia , Microscopia Crioeletrônica , Efeito Citopatogênico Viral/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Sci Adv ; 8(17): eabn2018, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486718

RESUMO

Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA