Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 47(2): 285-288, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030588

RESUMO

We report a study of soliton self-frequency shifting in a hydrogen-filled hollow-core fiber. The combination of hydrogen and short 40-fs input pulses underlies clean and efficient generation of Raman solitons between 1080 and 1600 nm. With 240-nJ input pulses, the Raman soliton energy ranges from 110 to 20 nJ over that wavelength range, and the pulse duration is approximately 45 fs. In particular, 70-nJ and 42-fs pulses are generated at 1300 nm. Numerical simulations agree reasonably well with experiments and predict that microjoule-energy tunable pulses should be possible with higher-energy input pulses.

2.
Opt Express ; 25(21): 25734-25740, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041238

RESUMO

We report on the use of a simple interferometer built with strongly-coupled core optical fiber for accurate vibration sensing. Our multi-core fiber (MCF) is designed to mode match a standard single-mode optical fiber (SMF). The interferometer consists of a low insertion loss SMF-MCF-SMF structure where only two super-modes interfere. The polymer coating of the MCF was structured and the interferometer was sandwiched between a flat piece and a V-groove. In this manner our device is highly sensitive to force with sensitivity reaching -4225 pm/N. To make the MCF interferometer sensitive to vibrations the flat piece was allowed to move, thus, its periodic movements exert cyclic localized pressure on the MCF which makes the interference pattern to shift periodically. Our sensors can be used to monitor vibrations in a broad frequency range with the advantage that the measurements are unaffected by temperature changes.

3.
Opt Lett ; 42(10): 2022-2025, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504739

RESUMO

We demonstrate a compact and versatile interferometric vibration sensor that operates in reflection mode. To build the device, a short segment of symmetric strongly coupled multicore optical fiber (MCF) is fusion spliced to a single-mode optical fiber (SMF). One end of the MCF segment is cleaved and placed in a cantilever position. Due to the SMF-MCF configuration, only two supermodes are excited in the MCF. Vibrations induce cyclic bending of the MCF cantilever which results in periodic oscillations of the reflected interference spectrum. In our device, the MCF itself is the inertial mass. The frequency range where our device is sensitive can be easily tailored from a few hertz to several kilohertz through the cantilever dimensions.

4.
Opt Lett ; 41(4): 832-5, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872200

RESUMO

In this Letter, we demonstrate a compellingly simple directional bending sensor based on multicore optical fibers (MCF). The device operates in reflection mode and consists of a short segment of a three-core MCF that is fusion spliced at the distal end of a standard single mode optical fiber. The asymmetry of our MCF along with the high sensitivity of the supermodes of the MCF make the small bending on the MCF induce drastic changes in the supermodes, their excitation, and, consequently, on the reflected spectrum. Our MCF bending sensor was found to be highly sensitive (4094 pm/deg) to small bending angles. Moreover, it is capable of distinguishing multiple bending orientations.

5.
Opt Express ; 23(19): 24759-69, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406677

RESUMO

To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays. As such in this work, we combine wavelength and mode-division multiplexed transmission over a 4.45 km low-DMGD 6-LP-mode fiber by employing low-loss all-fiber 10-port photonic lanterns to couple light in and out of the fiber. Hence, a minimum DMGD of 0.2 ns (maximum 0.357 ns) is measured after 4.45 km. Instrumental to the multi-mode transmission system is the employed time-domain-SDM receiver, allowing 10 spatial mode channels (over both polarizations) to be captured using only 3 coherent receivers and real-time oscilloscopes in comparison with 10 for conventional methods. The spatial channels were unraveled using 20 × 20 multiple-input multiple-output digital signal processing. By employing a novel round-robin encoding technique, stable performance over a long measurement period demonstrates the feasibility of 10x increase in single-core multi-mode transmission.

6.
Opt Lett ; 39(16): 4812-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121881

RESUMO

We demonstrate a novel high-temperature sensor using multicore fiber (MCF) spliced between two single-mode fibers. Launching light into such fiber chains creates a supermode interference pattern in the MCF that translates into a periodic modulation in the transmission spectrum. The spectrum shifts with changes in temperature and can be easily monitored in real time. This device is simple to fabricate and has been experimentally shown to operate at temperatures up to 1000°C in a very stable manner. Through simulation, we have optimized the multicore fiber design for sharp spectral features and high overall transmission in the optical communications window. Comparison between the experiment and the simulation has also allowed determination of the thermo-optic coefficient of the MCF as a function of temperature.

7.
Sci Rep ; 11(1): 5989, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727681

RESUMO

We propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).

8.
Sci Rep ; 10(1): 16180, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999364

RESUMO

We report on a compact, highly sensitive all-fiber accelerometer suitable for low frequency and low amplitude vibration sensing. The sensing elements in the device are two short segments of strongly coupled asymmetric multicore fiber (MCF) fusion spliced at 180° with respect to each other. Such segments of MCF are sandwiched between standard single mode fibers. The reflection spectrum of the device exhibits a narrow spectrum whose height and position in wavelength changes when it is subjected to vibrations. The interrogation of the accelerometer was carried out by a spectrometer and a photodetector to measure simultaneously wavelength shift and light power variations. The device was subjected to a wide range of vibration frequencies, from 1 mHz to 30 Hz, and accelerations from 0.76 mg to 29.64 mg, and performed linearly, with a sensitivity of 2.213 nW/mg. Therefore, we believe the accelerometer reported here may represent an alternative to existing electronic and optical accelerometers, especially for low frequency and amplitude vibrations, thanks to its compactness, simplicity, cost-effectiveness, implementation easiness and high sensitivity.

9.
Sci Rep ; 7(1): 4451, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667338

RESUMO

We report on the use of a multi-core fibre (MCF) comprising strongly-coupled cores for accurate strain sensing. Our MCF is designed to mode match a standard single mode optical fibre. This allows us to fabricate simple MCF interferometers whose interrogation is carried out with light sources, detectors and fibre components readily available from the optical communications tool box. Our MCF interferometers were used for sensing strain. The sensor calibration was carried out in a high-fidelity aerospace test laboratory. In addition, a packaged MCF interferometer was transferred into field trials to validate its performance under deployment conditions, specifically the sensors were installed in a historical iron bridge. Our results suggest that the MCF strain sensors here proposed are likely to reach the readiness level to compete with other mature sensor technologies, hence to find commercial application. An important advantage of our MCF interferometers is their capability to operate at very high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA