Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 47(5): 441-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26310434

RESUMO

The present report evaluates the advantages of using the gold nanoparticle-mediated laser perforation (GNOME LP) technique as a computer-controlled cell optoperforation to introduce Lucifer yellow (LY) into cells in order to analyze the gap junction coupling in cell monolayers. To permeabilize GM-7373 endothelial cells grown in a 24 multiwell plate with GNOME LP, a laser beam of 88 µm in diameter was applied in the presence of gold nanoparticles and LY. After 10 min to allow dye uptake and diffusion through gap junctions, we observed a LY-positive cell band of 179 ± 8 µm width. The presence of the gap junction channel blocker carbenoxolone during the optoperforation reduced the LY-positive band to 95 ± 6 µm. Additionally, a forskolin-related enhancement of gap junction coupling, recently found using the scrape loading technique, was also observed using GNOME LP. Further, an automatic cell imaging and a subsequent semi-automatic quantification of the images using a java-based ImageJ-plugin were performed in a high-throughput sequence. Moreover, the GNOME LP was used on cells such as RBE4 rat brain endothelial cells, which cannot be mechanically scraped as well as on three-dimensionally cultivated cells, opening the possibility to implement the GNOME LP technique for analysis of gap junction coupling in tissues. We conclude that the GNOME LP technique allows a high-throughput automated analysis of gap junction coupling in cells. Moreover this non-invasive technique could be used on monolayers that do not support mechanical scraping as well as on cells in tissue allowing an in vivo/ex vivo analysis of gap junction coupling.


Assuntos
Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Ouro/química , Lasers , Nanopartículas Metálicas/química , Animais , Carbenoxolona/farmacologia , Bovinos , Linhagem Celular , Células Endoteliais/citologia , Ratos
2.
Biomed Opt Express ; 9(6): 2627-2639, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258678

RESUMO

Volumetric imaging of connective tissue provides insights into the structure of biological tissue. Second harmonic generation (SHG) microscopy has become a standard method to image collagen rich tissue like skin or cornea. Due to the non-centrosymmetric architecture, no additional label is needed and tissue can be visualized noninvasively. Thus, SHG microscopy enables the investigation of collagen associated diseases, providing high resolution images and a field of view of several hundreds of µm. However, the in toto visualization of larger samples is limited to the working distance of the objective and the integration time of the microscope setup, which can sum up to several hours and days. A faster imaging technique for samples in the mesoscopic range is scanning laser optical tomography (SLOT), which provides linear fluorescence, scattering and absorption as intrinsic contrast mechanisms. Due to the advantages of SHG and the reduced measurement time of SLOT, the integration of SHG in SLOT would be a great extension. This way SHG measurements could be performed faster on large samples, providing isotropic resolution and simultaneous acquisition of all other contrast mechanisms available, such as fluorescence and absorption. SLOT is based on the principle of computed tomography, which requires the rotation of the sample. The SHG signal, however, depends strongly on the sample orientation and the polarization of the laser, which results in SHG intensity fluctuation during sample rotation and prevents successful 3D reconstruction. In this paper we investigate the angular dependence of the SHG signal by simulation and experiment and found a way to eliminate reconstruction artifacts caused by this angular dependence in SHG-SLOT data. This way, it is now possible to visualize samples in the mesoscopic range using SHG-SLOT, with isotropic resolution and in correlation to other contrast mechanisms as absorption, fluorescence and scattering.

3.
PLoS One ; 12(4): e0175431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388662

RESUMO

The mammalian cochlea is a complex macroscopic structure due to its helical shape and the microscopic arrangements of the individual layers of cells. To improve the outcomes of hearing restoration in deaf patients, it is important to understand the anatomic structure and composition of the cochlea ex vivo. Hitherto, only one histological technique based on confocal laser scanning microscopy and optical clearing has been developed for in toto optical imaging of the murine cochlea. However, with a growing size of the specimen, e.g., human cochlea, this technique reaches its limitations. Here, we demonstrate scanning laser optical tomography (SLOT) as a valuable imaging technique to visualize the murine cochlea in toto without any physical slicing. This technique can also be applied in larger specimens up to cm3 such as the human cochlea. Furthermore, immunolabeling allows visualization of inner hair cells (otoferlin) or spiral ganglion cells (neurofilament) within the whole cochlea. After image reconstruction, the 3D dataset was used for digital segmentation of the labeled region. As a result, quantitative analysis of position, length and curvature of the labeled region was possible. This is of high interest in order to understand the interaction of cochlear implants (CI) and cells in more detail.


Assuntos
Cóclea/diagnóstico por imagem , Tomografia Óptica/métodos , Animais , Camundongos
4.
PLoS One ; 12(9): e0184069, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873437

RESUMO

The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 µm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (µCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with µCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in µCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies.


Assuntos
Cóclea/anatomia & histologia , Lasers , Tomografia Óptica/métodos , Implantes Cocleares , Eletrodos , Humanos , Microtomografia por Raio-X
5.
Sci Rep ; 6: 35606, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759114

RESUMO

Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.


Assuntos
Imageamento Tridimensional/métodos , Imagem Multimodal/métodos , Patologia/métodos , Tomografia/métodos , Animais , Pulmão/patologia , Ratos
6.
PLoS One ; 10(11): e0143186, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599984

RESUMO

A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.


Assuntos
Holografia , Modelos Teóricos , Algoritmos , Humanos
7.
PLoS One ; 10(4): e0124052, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909631

RESUMO

Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.


Assuntos
Ouro/química , Holografia/métodos , Lasers , Nanopartículas Metálicas/química , Imagem Multimodal/métodos , Imagem Óptica/métodos , Actinas/metabolismo , Sinalização do Cálcio , Linhagem Celular , Sobrevivência Celular
8.
J Biomed Opt ; 20(11): 115005, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26562032

RESUMO

Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle­mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle­mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle­mediated laser manipulation.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Eletroporação/métodos , Ouro/efeitos da radiação , Nanopartículas Metálicas/efeitos da radiação , Pinças Ópticas , Transfecção/métodos , Permeabilidade da Membrana Celular/efeitos da radiação , Ouro/química , Nanopartículas Metálicas/química , Doses de Radiação
9.
PLoS One ; 9(8): e105964, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157402

RESUMO

The limited biocompatibility of decellularized scaffolds is an ongoing challenge in tissue engineering. Here, we demonstrate the residual immunogenicity of an extensively decellularized equine carotid artery (dEAC(intens)) and identify the involved immunogenic components. EAC were submitted to an elaborated intensified decellularization protocol with SDS/sodium desoxycholate for 72 h using increased processing volumes (dEAC(intens)), and compared to dEAC(ord) prepared by an ordinary protocol (40 h, normal volumes). Matrix integrity was checked via correlative volumetric visualization which revealed only minor structural changes in the arterial wall. In dEAC(intens), a substantial depletion of cellular components was obvious for smooth muscle actin (100%), MHC I complexes (97.8%), alphaGal epitops (98.4% and 91.3%) and for DNA (final concentration of 0.34 ± 0.16 ng/mg tissue). However, dEAC(intens) still evoked antibody formation in mice after immunization with dEAC(intens) extracts, although to a lower extent than dEAC(ord). Mouse plasma antibodies recognized a 140 kDa band which was revealed to contain collagen VI alpha1 and alpha2 chains via mass spectrometry of both 2D electrophoretically separated and immunoprecipitated proteins. Thus, even the complete removal of cellular proteins did not yield non-immunogenic dEAC as the extracellular matrix still conferred immunogenicity by collagen VI. However, as lower antibody levels were achieved by the intensified decellularization protocol, this seems to be a promising basis for further development.


Assuntos
Artérias Carótidas/imunologia , Colágeno Tipo IV/imunologia , Animais , Artérias Carótidas/transplante , Feminino , Xenoenxertos , Histocompatibilidade , Cavalos , Camundongos , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA