Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(18): 10317-25, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22873573

RESUMO

Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.


Assuntos
Desinfetantes/química , Desinfetantes/toxicidade , Água Potável/análise , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/toxicidade , Adsorção , Austrália , Linhagem Celular Tumoral , Desinfecção/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Halogenação , Humanos
2.
Chemosphere ; 234: 630-639, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31229724

RESUMO

Advanced organic characterisation methods were used to investigate the suitability of lab-based model compounds as surrogates to mimic the dissolved organic matter (DOM) of both first and second generation fermentation industry effluents. Comparisons to both humic acid and synthetic melanoidin revealed the limitations of using these model organic compounds in treatment studies of biorefinery effluent. Rapid resin fractionation (RRF) of effluent from yeast cultivated on molasses suggests that 64% of the dissolved organic matter is present in the form of very hydrophobic acid (VHPhoA) compounds. Molecular weight distribution by size exclusion chromatography (LC-OCND) and fluorophore specific intensity by fluorescence excitation and emission matrix (FEEM) of the yeast effluent was comparable to signatures from humic acid. This indicates that humic acid would be a suitable model compound for oxidation, adsorption and filtration studies. Differences among the fermentation industry effluents were found to be inherently dependent on both the biochemistry of yeast and processes used. RRF and FEEM spectra of effluent from bioethanol production on cellulosic feed highlighted a preponderance of neutral compounds with fluorophore specific intensity characteristic of non-humic compounds with a higher fraction of neutral compounds (41%) relative to VHPhoA (38%), SHPhoA (16%) and HPhi (5%) moieties. Findings were not consistent with commercial humics, synthetic melanoidins or other cellulosic and lignocellulosic based effluents from Kraft and Thermomechanical pulp mills since the actual pollutants are heavily dependent on the pre-treatment process. This suggests further work is required to develop a model compound for treatment studies of effluent from second generation bio-refineries.


Assuntos
Fermentação , Substâncias Húmicas , Modelos Teóricos , Compostos Orgânicos , Eliminação de Resíduos Líquidos/métodos , Adsorção , Poluentes Ambientais/análise , Filtração , Substâncias Húmicas/análise
3.
Chemosphere ; 92(11): 1513-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23668963

RESUMO

This paper investigates the effect of using recycled fiber (RCF) in newsprint production on the effluent quality and its treatability using membrane operations for internal and external recycling and reuse. Increased chemical usage in RCF for deinking had significant impact on the silica and sodium content of the effluent which in turn limits the membrane's operation. Increasing the RCF content from 0% to 50% is estimated to increase the silica content from 4 to 119mgL(-1) and sodium content from 135 to 500mgL(-1). A process model was developed to calculate the impact of these excess chemicals on the greenhouse gas (GHG) emission and brine disposal for an integrated membrane plant design producing 4MLday(-1) of recycled water. As the ratio of RCF increased from 0% to 50% in the mill process, the operating pressure increased for nanofiltration (NF) and reverse osmosis (RO). Additionally, organics presence in the feed increased the NF operating pressure above the simulated value and reduced the silica removal efficiency by 15%. Incorporation of lime coagulation pretreatment was found to be essential to operate RO at high recoveries with relatively GHG emissions. Without pretreatment, as RCF content increased from 0% to 50%, RO recovery decreased from 80% to 22% and the expended GHG increased from 0.9 to 3.5kgCO2m(-3). Although the excess sodium concentration limits the brine disposal for irrigation purposes, a partial blending of the treated wastewater with other process streams resulted in the reduction of sodium absorption ratio by 20%.


Assuntos
Resíduos Industriais , Papel , Impressão , Gerenciamento de Resíduos/métodos , Compostos de Cálcio/química , Magnésio/química , Membranas Artificiais , Óxidos/química , Pressão , Águas Residuárias/química
4.
Chemosphere ; 90(4): 1461-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23116827

RESUMO

In this study, the efficiency of six ion exchange resins to reduce the dissolved organic matter (DOM) from a biologically treated newsprint mill effluent was evaluated and the dominant removal mechanism of residual organics was established using advanced organic characterisations techniques. Among the resins screened, TAN1 possessed favourable Freundlich parameters, high resin capacity and solute affinity, closely followed by Marathon MSA and Marathon WBA. The removal efficiency of colour and lignin residuals was generally good for the anion exchange resins, greater than 50% and 75% respectively. In terms of the DOM fractions removal measured through liquid chromatography-organic carbon and nitrogen detector (LC-OCND), the resins mainly targeted the removal of humic and fulvic acids of molecular weight ranging between 500 and 1000 g mol(-1), the portion expected to contribute the most to the aromaticity of the effluent. For the anion exchange resins, physical adsorption operated along with ion exchange mechanism assisting to remove neutral and transphilic acid fractions of DOM. The column studies confirmed TAN1 being the best of those screened, exhibited the longest mass transfer zone and maximum treatable volume of effluent. The treatable effluent volume with 50% reduction in dissolved organic carbon (DOC) was 4.8 L for TAN1 followed by Marathon MSA - 3.6L, Marathon 11 - 2.0 L, 21K-XLT - 1.5 L and Marathon WBA - 1.2 L. The cation exchange resin G26 was not effective in DOM removal as the maximum DOC removal obtained was only 27%. The resin capacity could not be completely restored for any of the resins; however, a maximum restoration up to 74% and 93% was achieved for TAN1 and Marathon WBA resins. While this feasibility study indicates the potential option of using ion exchange resins for the reclamation of paper mill effluent, the need for improving the regeneration protocols to restore the resin efficiency is also identified. Similarly, care should be taken while employing LC-OCND for characterising resin-treated effluents, as the resin degradation is expected to contribute some organic carbon moieties misleading the actual performance of resin.


Assuntos
Benzopiranos/química , Resíduos Industriais/análise , Resinas de Troca Iônica/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Benzopiranos/análise , Biodegradação Ambiental , Papel , Poluentes Químicos da Água/análise
5.
Chemosphere ; 86(8): 829-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22209320

RESUMO

Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62cf. 1.47kgm(-3)) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240mgL(-1). The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58mgL(-1)), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534gmol(-1)) and aromaticity (5.35 vs. 4.67Lmg(-1)m(-1)) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0Lmg(-1)m(-1) in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50gmol(-1) while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.


Assuntos
Carvão Vegetal/química , Poluentes Ambientais/isolamento & purificação , Eliminação de Resíduos de Serviços de Saúde/métodos , Compostos Orgânicos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Adsorção , Carbono/isolamento & purificação , Cromatografia Líquida , Nitrogênio/isolamento & purificação , Austrália do Sul , Espectrometria de Fluorescência
6.
Water Res ; 45(14): 4227-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21703657

RESUMO

The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (K(DOC)) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log K(OW)) greater than 4 there was a significant difference in K(DOC) between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in K(DOC) was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log K(OW) > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using K(DOC) values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems.


Assuntos
Carbono/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Carbono/química , Dimetilpolisiloxanos/química , Monitoramento Ambiental , Cinética , Fenóis/química , Queensland , Eliminação de Resíduos Líquidos/instrumentação , Água/química , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
7.
Chemosphere ; 81(1): 86-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20630562

RESUMO

Recycling paper mill effluent by conventional water treatment is difficult due to the persistence of salt and recalcitrant organics. Elimination of dissolved organic matter (DOM) from paper mill effluent was studied using three treatment options, ion exchange resin (IER), granular activated carbon (GAC) and nanofiltration (NF). The removal efficiency was analysed based on hydrophobicity, molecular weight and fluorogenic origin of the DOM fractions. For IER, GAC and NF treatments, overall removal of dissolved organic carbon was 72%, 76% and 91%, respectively. Based on the hydrophobicity, all the three treatment methods majorly removed hydrophobic acid fractions (HPhoA). Further, IER acted on all fractions, 57% of HPhoA, 44% of transphilic acid and 18% of hydrophilics, substantiating that the removal is by both ion exchange and adsorption. Based on the molecular weight, IER and GAC treatments acted majorly on the high molecular weight fractions, whereas NF eliminated all molecular weight fractions. After GAC adsorption, some amount of humic hydrolysates and low molecular weight neutrals persisted in the effluent. After IER treatment, amount of low molecular weight compounds increased due to resin leaching. Qualitative analysis of fluorescence excitation emission matrices showed that the fulvic acid-like fluorophores were more recalcitrant among the various DOM fractions, considerable amount persisted after all the three treatment methods. Three treatment methods considerably differed in terms of removing different DOM fractions; however, a broad-spectrum process like NF would be needed to achieve the maximum elimination.


Assuntos
Resíduos Industriais/análise , Papel , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/análise , Carvão Vegetal/química , Fracionamento Químico , Cromatografia Líquida , Recuperação e Remediação Ambiental/métodos , Filtração , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Resinas de Troca Iônica/química , Poluentes da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA