RESUMO
PURPOSE: Patients with chronic chagasic cardiomyopathy with preserved ventricular function present with autonomic imbalance. This study evaluated the effects of exercise training (ET) in restoring peripheral and cardiac autonomic control and skeletal muscle phenotype in patients with subclinical chronic chagasic cardiomyopathy. METHODS: This controlled trial (NCT02295215) included 24 chronic chagasic cardiomyopathy patients who were randomized www.random.org/lists/ into two groups: those who underwent exercise training (n = 12) and those who continued their usual activities (n = 12). Eight patients completed the exercise training protocol, and 10 patients were clinically followed up for 4 months. Muscular sympathetic nerve activity was measured by microneurography and muscle blood flow (MBF) using venous occlusion plethysmography. The low-frequency component of heart rate variability in normalized units (LFnuHR) reflects sympathetic activity in the heart, and the low-frequency component of systolic blood pressure variability in normalized units reflects sympathetic activity in the vessels. The infusion of vasoactive drugs (phenylephrine and sodium nitroprusside) was used to evaluate cardiac baroreflex sensitivity, and a vastus lateralis muscle biopsy was performed to evaluate atrogin-1 and MuRF-1 gene expression. RESULTS: The baroreflex sensitivity for increases (p = 0.002) and decreases (p = 0.02) in systolic blood pressure increased in the ET group. Muscle blood flow also increased only in the ET group (p = 0.004). Only the ET group had reduced resting muscular sympathetic nerve activity levels (p = 0.008) and sympathetic activity in the heart (LFnu; p = 0.004) and vessels (p = 0.04) after 4 months. Regarding skeletal muscle, after 4 months, participants in the exercise training group presented with lower atrogin-1 gene expression than participants who continued their activities as usual (p = 0.001). The reduction in muscular sympathetic nerve activity was positively associated with reduced atrogin-1 (r = 0.86; p = 0.02) and MuRF-1 gene expression (r = 0.64; p = 0.06); it was negatively associated with improved baroreflex sensitivity both for increases (r = -0.72; p = 0.020) and decreases (r = -0.82; p = 0.001) in blood pressure. CONCLUSIONS: ET improved cardiac and peripheral autonomic function in patients with subclinical chagasic cardiomyopathy. ET reduced MSNA and sympathetic activity in the heart and vessels and increased cardiac parasympathetic tone and baroreflex sensitivity. Regarding peripheral muscle, after 4 months, patients who underwent exercise training had an increased cross-sectional area of type I fibers and oxidative metabolism of muscle fibers, and decreased atrogin-1 gene expression, compared to participants who continued their activities as usual. In addition, the reduction in MSNA was associated with improved cardiac baroreflex sensitivity, reduced sympathetic cardiovascular tone, and reduced atrogin-1 and MuRF-1 gene expression. TRIAL REGISTRATION: ID: NCT02295215. Registered in June 2013.
Assuntos
Cardiomiopatia Chagásica , Sistema Nervoso Autônomo , Barorreflexo , Pressão Sanguínea , Cardiomiopatia Chagásica/terapia , Exercício Físico , Frequência Cardíaca , Humanos , Músculo Esquelético , Sistema Nervoso SimpáticoRESUMO
INTRODUCTION: The muscular metaboreflex, whose activation regulates blood flow during isometric and aerobic exercise, is blunted in patients with heart failure (HF), and cardiac resynchronization therapy (CRT) may restore this regulatory reflex. OBJECTIVE: To evaluate metaboreflex responses after CRT. METHODS: Thirteen HF patients and 12 age-matched healthy control subjects underwent the following evaluations (pre- and post-CRT implantation in the patient group): (a) heart rate, blood pressure, and forearm blood flow measurements; (b) muscle sympathetic nerve activity (MSNA) evaluation; and (c) peak oxygen consumption (VO2peak ). Examinations were performed at rest, during moderate isometric exercise (IE), and during forearm ischemia (metaboreflex activation). The primary outcome was the increment in MSNA during limb ischemia compared to the rest moment (ΔMSNA rest to metaboreflex activation). RESULTS: After CRT, rest MSNA decreased in the HF participants: 50.4 ± 9.2 bursts/min pre-CRT vs 34.0 ± 14.4 bursts/min post-CRT, P = .001, accompanied by an improvement in systolic blood pressure and in rate-pressure product. MSNA during limb ischemia decreased: 56.6 ± 11.5 bursts/min pre-CRT vs 43.6 ± 12.7 bursts/min post-CRT, P = .001, and the ΔMSNA rest to metaboreflex activation increased: 0% (interquartile range [IQR)], -7 to 9) vs 13% (IQR, 5-30), P = .03. An augmentation of mean blood pressure during limb ischemia post-CRT was noticed: 94 mmHg (IQR, 81-104) vs 110 mmHg (IQR, 100-117), P = .04. CRT improved VO2peak , and this improvement was correlated with diminution in ΔMSNA pre- to post-CRT at rest moment (rs = -0.74, P = .006). CONCLUSION: CRT provides metaboreflex sensitization and MSNA enhancement. The restoration of sympathetic responsiveness correlates with the improvement in functional capacity.
Assuntos
Terapia de Ressincronização Cardíaca/métodos , Exercício Físico/fisiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Frequência Cardíaca/fisiologia , Reflexo/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Seguimentos , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Heart failure (HF) is characterized by decreased exercise capacity, attributable to neurocirculatory and skeletal muscle factors. Cardiac resynchronization therapy (CRT) and exercise training have each been shown to decrease muscle sympathetic nerve activity (MSNA) and increase exercise capacity in patients with HF. We hypothesized that exercise training in the setting of CRT would further reduce MSNA and vasoconstriction and would increase Ca2+-handling gene expression in skeletal muscle in patients with chronic systolic HF. Thirty patients with HF, ejection fraction <35% and CRT for 1 mo, were randomized into two groups: exercise-trained (ET, n = 14) and untrained (NoET, n = 16) groups. The following parameters were compared at baseline and after 4 mo in each group: VÌo2 peak, MSNA (microneurography), forearm blood flow, and Ca2+-handling gene expression in vastus lateralis muscle. After 4 mo, exercise duration and VÌo2 peak were significantly increased in the ET group (P = 0.04 and P = 0.01, respectively), but not in the NoET group. MSNA was significantly reduced in the ET (P = 0.001), but not in NoET, group. Similarly, forearm vascular conductance significantly increased in the ET (P = 0.0004), but not in the NoET, group. The expression of the Na+/Ca2+ exchanger (P = 0.01) was increased, and ryanodine receptor expression was preserved in ET compared with NoET. In conclusion, the exercise training in the setting of CRT improves exercise tolerance and neurovascular control and alters Ca2+-handling gene expression in the skeletal muscle of patients with systolic HF. These findings highlight the importance of including exercise training in the treatment of patients with HF even following CRT.
Assuntos
Cálcio/metabolismo , Terapia de Ressincronização Cardíaca , Terapia por Exercício , Exercício Físico , Insuficiência Cardíaca/terapia , Acoplamento Neurovascular , Músculo Quadríceps/metabolismo , Sistema Nervoso Simpático/metabolismo , Ecocardiografia , Teste de Esforço , Tolerância ao Exercício , Feminino , Antebraço/irrigação sanguínea , Expressão Gênica , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Músculo Quadríceps/inervação , RNA Mensageiro/metabolismo , Fluxo Sanguíneo Regional , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Trocador de Sódio e Cálcio/genéticaRESUMO
Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.
Assuntos
Terapia por Exercício , Insuficiência Cardíaca Sistólica/fisiopatologia , Músculo Esquelético/fisiopatologia , Vasoconstrição , Tolerância ao Exercício , Insuficiência Cardíaca Sistólica/terapia , Humanos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Ventilação PulmonarRESUMO
Arterial baroreflex control of muscle sympathetic nerve activity (ABRMSNA) is impaired in chronic systolic heart failure (CHF). The purpose of the study was to test the hypothesis that exercise training would improve the gain and reduce the time delay of ABRMSNA in CHF patients. Twenty-six CHF patients, New York Heart Association Functional Class II-III, EF ≤ 40%, peak VÌo2 ≤ 20 ml·kg(-1)·min(-1) were divided into two groups: untrained (UT, n = 13, 57 ± 3 years) and exercise trained (ET, n = 13, 49 ± 3 years). Muscle sympathetic nerve activity (MSNA) was directly recorded by microneurography technique. Arterial pressure was measured on a beat-to-beat basis. Time series of MSNA and systolic arterial pressure were analyzed by autoregressive spectral analysis. The gain and time delay of ABRMSNA was obtained by bivariate autoregressive analysis. Exercise training was performed on a cycle ergometer at moderate intensity, three 60-min sessions per week for 16 wk. Baseline MSNA, gain and time delay of ABRMSNA, and low frequency of MSNA (LFMSNA) to high-frequency ratio (HFMSNA) (LFMSNA/HFMSNA) were similar between groups. ET significantly decreased MSNA. MSNA was unchanged in the UT patients. The gain and time delay of ABRMSNA were unchanged in the ET patients. In contrast, the gain of ABRMSNA was significantly reduced [3.5 ± 0.7 vs. 1.8 ± 0.2, arbitrary units (au)/mmHg, P = 0.04] and the time delay of ABRMSNA was significantly increased (4.6 ± 0.8 vs. 7.9 ± 1.0 s, P = 0.05) in the UT patients. LFMSNA-to-HFMSNA ratio tended to be lower in the ET patients (P < 0.08). Exercise training prevents the deterioration of ABRMSNA in CHF patients.
Assuntos
Pressão Arterial , Barorreflexo , Sistema Cardiovascular/inervação , Terapia por Exercício , Insuficiência Cardíaca/terapia , Músculo Esquelético/inervação , Sistema Nervoso Simpático/fisiopatologia , Adulto , Idoso , Ciclismo , Brasil , Doença Crônica , Terapia por Exercício/métodos , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do TratamentoRESUMO
Previous studies have demonstrated that muscle mechanoreflex and metaboreflex controls are altered in heart failure (HF), which seems to be due to changes in cyclooxygenase (COX) pathway and changes in receptors on afferent neurons, including transient receptor potential vanilloid type-1 (TRPV1) and cannabinoid receptor type-1 (CB1). The purpose of the present study was to test the hypotheses: 1) exercise training (ET) alters the muscle metaboreflex and mechanoreflex control of muscle sympathetic nerve activity (MSNA) in HF patients. 2) The alteration in metaboreflex control is accompanied by increased expression of TRPV1 and CB1 receptors in skeletal muscle. 3) The alteration in mechanoreflex control is accompanied by COX-2 pathway in skeletal muscle. Thirty-four consecutive HF patients with ejection fractions <40% were randomized to untrained (n = 17; 54 ± 2 yr) or exercise-trained (n = 17; 56 ± 2 yr) groups. MSNA was recorded by microneurography. Mechanoreceptors were activated by passive exercise and metaboreceptors by postexercise circulatory arrest (PECA). COX-2 pathway, TRPV1, and CB1 receptors were measured in muscle biopsies. Following ET, resting MSNA was decreased compared with untrained group. During PECA (metaboreflex), MSNA responses were increased, which was accompanied by the expression of TRPV1 and CB1 receptors. During passive exercise (mechanoreflex), MSNA responses were decreased, which was accompanied by decreased expression of COX-2, prostaglandin-E2 receptor-4, and thromboxane-A2 receptor and by decreased in muscle inflammation, as indicated by increased miRNA-146 levels and the stable NF-κB/IκB-α ratio. In conclusion, ET alters muscle metaboreflex and mechanoreflex control of MSNA in HF patients. This alteration with ET is accompanied by alteration in TRPV1 and CB1 expression and COX-2 pathway and inflammation in skeletal muscle.
Assuntos
Terapia por Exercício , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Reflexo/fisiologia , Adulto , Idoso , Doença Crônica , Ciclo-Oxigenase 2/fisiologia , Teste de Esforço , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/biossíntese , Transdução de Sinais/fisiologia , Volume Sistólico/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Canais de Cátion TRPV/biossínteseRESUMO
Background and aims: Cardiomyocyte hypertrophy and interstitial fibrosis are key components of myocardial remodeling in Heart Failure (HF) with preserved (HFpEF) or reduced ejection fraction (HFrEF). MicroRNAs (miRNAs) are non-coding, evolutionarily conserved RNA molecules that may offer novel insights into myocardial remodeling. This study aimed to characterize miRNA expression in HFpEF (LVEF ≥ 45%) and HFrEF (LVEF < 45%) and its association with myocardial remodeling. Methods: Prospectively enrolled symptomatic HF patients (HFpEF:n = 36; HFrEF:n = 31) and controls (n = 23) underwent cardiac magnetic resonance imaging with T1-mapping and circulating miRNA expression (OpenArray system). Results: 13 of 188 miRNAs were differentially expressed between HF groups (11 downregulated in HFpEF). Myocardial extracellular volume (ECV) was increased in both HF groups (HFpEF 30 ± 5%; HFrEF 30 ± 3%; controls 26 ± 2%, p < 0.001). miR-128a-3p, linked to cardiac hypertrophy, fibrosis, and dysfunction, correlated positively with ECV in HFpEF (r = 0.60, p = 0.01) and negatively in HFrEF (r = -0.51, p = 0.04). miR-423-5p overexpression, previously associated HF mortality, was inversely associated with LVEF (r = - 0.29, p = 0.04) and intracellular water lifetime (τic) (r = -0.45, p < 0.05) in both HF groups, and with NT-proBNP in HFpEF (r = -0.63, p < 0.01). Conclusions: miRNA expression profiles differed between HF phenotypes. The differential expression and association of miR-128a-3p with ECV may reflect the distinct vascular, interstitial, and cellular etiologies of HF phenotypes.
RESUMO
Introduction: Data on patients hospitalized with acute heart failure in Brazil scarce. Methods: We performed a cross-sectional, retrospective, records-based study using data retrieved from a large public database of heart failure admissions to any hospital from the Brazilian National Public Health System (SUS) (SUS Hospital Information System [SIHSUS] registry) to determine the in-hospital all-cause mortality rate, in-hospital renal replacement therapy rate and its association with outcome. Results: In total, 910,128 hospitalizations due to heart failure were identified in the SIHSUS registry between April 2017 and August 2021, of which 106,383 (11.7%) resulted in in-hospital death. Renal replacement therapy (required by 8,179 non-survivors [7.7%] and 11,496 survivors [1.4%, p < 0.001]) was associated with a 56% increase in the risk of death in the univariate regression model (HR 1.56, 95% CI 1.52 -1.59), a more than threefold increase of the duration of hospitalization, and a 45% or greater increase of cost per day. All forms of renal replacement therapy remained independently associated with in-hospital mortality in multivariable analysis (intermittent hemodialysis: HR 1.64, 95% CI 1.60 -1.69; continuous hemodialysis: HR 1.52, 95% CI 1.42 -1.63; peritoneal dialysis: HR 1.47, 95% CI 1.20 -1.88). Discussion: The in-hospital mortality rate of 11.7% observed among patients with acute heart failure admitted to Brazilian public hospitals was alarmingly high, exceeding that of patients admitted to North American and European institutions. This is the first report to quantify the rate of renal replacement therapy in patients hospitalized with acute heart failure in Brazil.
RESUMO
BACKGROUND: Exercise training improves physical capacity in patients with heart failure with reduced ejection fraction (HFrEF), but the mechanisms involved in this response is not fully understood. The aim of this study was to determine if physical capacity increase in patients HFrEF is associated with muscle sympathetic nerve activity (MSNA) reduction and muscle blood flow (MBF) increase. METHODS: The study included 124 patients from a 17-year database, divided according to exercise training status: 1) exercise-trained (ET, n = 83) and 2) untrained (UNT, n = 41). MSNA and MBF were obtained using microneurography and venous occlusion plethysmography, respectively. Physical capacity was evaluated by cardiopulmonary exercise test. Moderate aerobic exercise was performed 3 times/wk. for 4 months. RESULTS: Exercise training increased peak oxygen consumption (VÌO2, 16.1 ± 0.4 vs 18.9 ± 0.5 mL·kg-1·min-1, P < 0.001), LVEF (28 ± 1 vs 30 ± 1%, P = 0.027), MBF (1.57 ± 0.06 vs 2.05 ± 0.09 mL.min-1.100 ml-1, P < 0.001) and muscle vascular conductance (MVC, 1.82 ± 0.07 vs 2.45 ± 0.11 units, P < 0.001). Exercise training significantly decreased MSNA (45 ± 1 vs 32 ± 1 bursts/min, P < 0.001). The logistic regression analyses showed that MSNA [(OR) 0.921, 95% CI 0.883-0.962, P < 0.001] was independently associated with peak VÌO2. CONCLUSIONS: The increase in physical capacity provoked by aerobic exercise in patients with HFrEF is associated with the improvement in MSNA.
Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Músculo Esquelético , Volume Sistólico , Exercício Físico , Terapia por Exercício , Sistema Nervoso Simpático , Pressão SanguíneaRESUMO
AIMS: We tested the hypothesis that the effects of combined inspiratory muscle training and aerobic exercise training (IMT + AET) on muscle sympathetic nerve activity (MSNA) and forearm blood flow in patients with heart failure with reduced ejection fraction are more pronounced than the effects of AET alone. METHODS AND RESULTS: Patients aged 30-70 years, New York Heart Association Functional Class II-III, and left ventricular ejection fraction ≤40% were randomly assigned to four groups: IMT (n = 11), AET (n = 12), IMT + AET (n = 9), and non-training (NT; n = 10). MSNA was recorded using microneurography. Forearm blood flow was measured by venous occlusion plethysmography and inspiratory muscle strength by maximal inspiratory pressure. IMT consisted of 30 min sessions, five times a week, for 4 months. Moderate AET consisted of 60 min sessions, three times a week for 4 months. AET (-10 ± 2 bursts/min, P = 0.03) and IMT + AET (-13 ± 4 bursts/min, P = 0.007) reduced MSNA. These responses in MSNA were not different between AET and IMT + AET groups. IMT (0.22 ± 0.08 mL/min/100 mL, P = 0.03), AET (0.27 ± 0.09 mL/min/100 mL, P = 0.01), and IMT + AET (0.35 ± 0.12 mL/min/100 mL, P = 0.008) increased forearm blood flow. No differences were found between groups. AET (3 ± 1 mL/kg/min, P = 0.006) and IMT + AET (4 ± 1 mL/kg/min, P = 0.001) increased peak oxygen consumption. These responses were similar between these groups. IMT (20 ± 3 cmH2 O, P = 0.005) and IMT + AET (18 ± 3 cmH2 O, P = 0.01) increased maximal inspiratory pressure. No significant changes were observed in the NT group. CONCLUSIONS: IMT + AET causes no additive effects on neurovascular control in patients with heart failure with reduced ejection fraction compared with AET alone. These findings may be, in part, because few patients had inspiratory muscle weakness.
Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Exercício Físico , Insuficiência Cardíaca/terapia , Humanos , Músculos , Volume SistólicoRESUMO
AIMS: Skeletal muscle dysfunction is a systemic consequence of heart failure (HF) that correlates with functional capacity. However, the impairment within the skeletal muscle is not well established. We investigated the effect of exercise training on peripheral muscular performance and oxygenation in HF patients. METHODS AND RESULTS: HF patients with ejection fraction ≤40% were randomized 2:1 to exercise training or control for 12 weeks. Muscle tissue oxygen was measured noninvasively by near-infrared spectroscopy (NIRS) during rest and a symptom-limited cardiopulmonary exercise test (CPET) before and after intervention. Measurements included skeletal muscle oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, VO2 peak, VE/VCO2 slope, and heart rate. Muscle sympathetic nerve activity by microneurography, and muscle blood flow by plethysmography were also assessed at rest pre and post 12 weeks. Twenty-four participants (47.5 ± 7.4 years, 58% men, 75% no ischemic) were allocated to exercise training (ET, n = 16) or control (CG, n = 8). At baseline, no differences between groups were found. Exercise improved VO2 peak, slope VE/VCO2, and heart rate. After the intervention, significant improvements at rest were seen in the ET group in muscle sympathetic nerve activity and muscle blood flow. Concomitantly, a significant decreased in Oxy-Hb (from 29.4 ± 20.4 to 15.7 ± 9.0 µmol, p = 0.01), Deoxi-Hb (from 16.3 ± 8.2 to 12.2 ± 6.0 µmol, p = 0.003) and HbT (from 45.7 ± 27.6 to 27.7 ± 13.4 µmol, p = 0.008) was detected at peak exercise after training. No changes were observed in the control group. CONCLUSION: Exercise training improves skeletal muscle function and functional capacity in HF patients with reduced ejection fraction. This improvement was associated with increased oxygenation of the peripheral muscles, increased muscle blood flow, and decreased sympathetic nerve activity.
Assuntos
Insuficiência Cardíaca , Consumo de Oxigênio , Exercício Físico , Teste de Esforço , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Masculino , Músculo Esquelético/metabolismo , Volume SistólicoRESUMO
AIMS: Despite of recent advances in the pharmacological treatment, heart failure (HF) maintains significant morbidity and mortality rates. While serum potassium disorders are common and associated with adverse outcomes, the exact recommended potassium level for patients with HF are not entirely established. We aimed to investigate the prognostic role of potassium levels on a cohort of patients with symptomatic chronic HF. METHODS AND RESULTS: Patients with symptomatic chronic HF were identified at the referral to 6 min walking test (6MWT) and were prospectively followed up for cardiovascular events. Clinical and laboratorial data were retrospectively obtained. The primary endpoint was the composite of cardiovascular death, hospitalization due to HF, and heart transplantation. The cohort included 178 patients with HF with the mean age of 51 ± 12.76 years, 39% were female, 85% of non-ischaemic cardiomyopathy, and 38% had New York Heart Association Class III with a relatively high Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score (12.91 ± 6.6). The mean left ventricular ejection fraction was 39.98 ± 15.79%, and the mean 6MWT distance was 353 ± 136 m. After a median follow-up of 516 days, there were 22 major cardiovascular events (4 cardiovascular deaths, 13 HF admissions, and 5 heart transplants). Patients were stratified according to cut-point level of serum potassium of 4.7 mmol/L to predict combined cardiac events based on receiver operating characteristic analysis. Individuals with higher potassium levels had worse renal function (glomerular filtration rate, K ≤ 4.7: 102.8 ± 32.2 mL/min/1.73 m2 vs. K > 4.7: 85.42 ± 36.2 mL/min/1.73 m2 , P = 0.004), higher proportion of New York Heart Association Class III patients (K ≤ 4.7: 28% vs. K > 4.7: 48%, P = 0.0029), and also higher MAGGIC score (K ≤ 4.7: 12.08 ± 5.7 vs. K > 4.7: 14.9 ± 7.9, P = 0.0089), without significant differences on the baseline pharmacological HF treatment. Both potassium levels [hazard ratio (HR) 4.26, 95% confidence interval (CI) 1.59-11.421, P = 0.003] and 6MWT distance (HR 0.99, 95% CI 0.993-0.999, P = 0.01) were independently associated with the primary outcome. After adjustments for MAGGIC score and 6MWT distance, potassium levels > 4.7 mmol/L maintained a significant association with outcomes (HR 3.57, 95% CI 1.305-9.807, P = 0.013). Patients with K > 4.7 mmol/L were more likely to present clinical events during the follow-up (log rank = 0.005). Adding potassium levels to the model including 6MWT and MAGGIC significantly improved the prediction of events over 2 years (integrated discrimination index 0.105, 95% CI 0.018-0.281, P = 0.012 and net reclassification index 0.447, 95% CI 0.077-0.703, P = 0.028). CONCLUSIONS: Potassium levels were independently associated with worse outcomes in patients with chronic symptomatic HF, also improving the accuracy model for prognostic prediction when added to MAGGIC score and 6MWT distance. The potassium levels above 4.7 mmol/L might identify those patients at an increased risk of cardiovascular events.
Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Potássio , Prognóstico , Estudos Retrospectivos , Volume SistólicoRESUMO
Sympathetic hyperactivation and baroreflex dysfunction are hallmarks of heart failure with reduced ejection fraction (HFrEF). However, it is unknown whether the progressive loss of phasic activity of sympathetic nerve bursts is associated with baroreflex dysfunction in HFrEF patients. Therefore, we investigated the association between the oscillatory pattern of muscle sympathetic nerve activity (LFMSNA/HFMSNA) and the gain and coupling of the sympathetic baroreflex function in HFrEF patients. In a sample of 139 HFrEF patients, two groups were selected according to the level of LFMSNA/HFMSNA index: (1) Lower LFMSNA/HFMSNA (lower terciles, n = 46, aged 53 ± 1 y) and (2) Higher LFMSNA/HFMSNA (upper terciles, n = 47, aged 52 ± 2 y). Heart rate (ECG), arterial pressure (oscillometric method), and muscle sympathetic nerve activity (microneurography) were recorded for 10 min in patients while resting. Spectral analysis of muscle sympathetic nerve activity was conducted to assess the LFMSNA/HFMSNA, and cross-spectral analysis between diastolic arterial pressure, and muscle sympathetic nerve activity was conducted to assess the sympathetic baroreflex function. HFrEF patients with lower LFMSNA/HFMSNA had reduced left ventricular ejection fraction (26 ± 1 vs. 29 ± 1%, P = 0.03), gain (0.15 ± 0.03 vs. 0.30 ± 0.04 a.u./mmHg, P < 0.001) and coupling of sympathetic baroreflex function (0.26 ± 0.03 vs. 0.56 ± 0.04%, P < 0.001) and increased muscle sympathetic nerve activity (48 ± 2 vs. 41 ± 2 bursts/min, P < 0.01) and heart rate (71 ± 2 vs. 61 ± 2 bpm, P < 0.001) compared with HFrEF patients with higher LFMSNA/HFMSNA. Further analysis showed an association between the LFMSNA/HFMSNA with coupling of sympathetic baroreflex function (R = 0.56, P < 0.001) and left ventricular ejection fraction (R = 0.23, P = 0.02). In conclusion, there is a direct association between LFMSNA/HFMSNA and sympathetic baroreflex function and muscle sympathetic nerve activity in HFrEF patients. This finding has clinical implications, because left ventricular ejection fraction is less in the HFrEF patients with lower LFMSNA/HFMSNA.
RESUMO
BACKGROUND: The exercise intolerance in chronic heart failure with reduced ejection fraction (HFrEF) is mostly attributed to alterations in skeletal muscle. However, the mechanisms underlying the skeletal myopathy in patients with HFrEF are not completely understood. We hypothesized that (i) aerobic exercise training (AET) and inspiratory muscle training (IMT) would change skeletal muscle microRNA-1 expression and downstream-associated pathways in patients with HFrEF and (ii) AET and IMT would increase leg blood flow (LBF), functional capacity, and quality of life in these patients. METHODS: Patients age 35 to 70 years, left ventricular ejection fraction (LVEF) ≤40%, New York Heart Association functional classes II-III, were randomized into control, IMT, and AET groups. Skeletal muscle changes were examined by vastus lateralis biopsy. LBF was measured by venous occlusion plethysmography, functional capacity by cardiopulmonary exercise test, and quality of life by Minnesota Living with Heart Failure Questionnaire. All patients were evaluated at baseline and after 4 months. RESULTS: Thirty-three patients finished the study protocol: control (n = 10; LVEF = 25 ± 1%; six males), IMT (n = 11; LVEF = 31 ± 2%; three males), and AET (n = 12; LVEF = 26 ± 2%; seven males). AET, but not IMT, increased the expression of microRNA-1 (P = 0.02; percent changes = 53 ± 17%), decreased the expression of PTEN (P = 0.003; percent changes = -15 ± 0.03%), and tended to increase the p-AKTser473 /AKT ratio (P = 0.06). In addition, AET decreased HDAC4 expression (P = 0.03; percent changes = -40 ± 19%) and upregulated follistatin (P = 0.01; percent changes = 174 ± 58%), MEF2C (P = 0.05; percent changes = 34 ± 15%), and MyoD expression (P = 0.05; percent changes = 47 ± 18%). AET also increased muscle cross-sectional area (P = 0.01). AET and IMT increased LBF, functional capacity, and quality of life. Further analyses showed a significant correlation between percent changes in microRNA-1 and percent changes in follistatin mRNA (P = 0.001, rho = 0.58) and between percent changes in follistatin mRNA and percent changes in peak VO2 (P = 0.004, rho = 0.51). CONCLUSIONS: AET upregulates microRNA-1 levels and decreases the protein expression of PTEN, which reduces the inhibitory action on the PI3K-AKT pathway that regulates the skeletal muscle tropism. The increased levels of microRNA-1 also decreased HDAC4 and increased MEF2c, MyoD, and follistatin expression, improving skeletal muscle regeneration. These changes associated with the increase in muscle cross-sectional area and LBF contribute to the attenuation in skeletal myopathy, and the improvement in functional capacity and quality of life in patients with HFrEF. IMT caused no changes in microRNA-1 and in the downstream-associated pathway. The increased functional capacity provoked by IMT seems to be associated with amelioration in the respiratory function instead of changes in skeletal muscle. ClinicalTrials.gov (Identifier: NCT01747395).
Assuntos
Insuficiência Cardíaca/terapia , Inalação/fisiologia , MicroRNAs/metabolismo , Qualidade de Vida/psicologia , Volume Sistólico/fisiologia , Adulto , Idoso , Exercício Físico/fisiologia , Feminino , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Studies have shown significant benefits of exercise therapy in heart failure (HF) with a reduced ejection fraction (HFrEF) and HF with a preserved ejection fraction (HFpEF). The mechanisms responsible for the beneficial effect of exercise in HFrEF and HFpEF are still unclear. We hypothesized that the effect of exercise on myocardial remodeling may explain its beneficial effect. METHODS: IMAGING-REHAB-HF is a single-center, randomized, controlled clinical trial using cardiac magnetic resonance imaging, vasomotor endothelial function, cardiac sympathetic activity imaging and serum biomarkers to compare the effect of exercise therapy in HFpEF (LVEF ≥ 45%) and HFrEF (LVEF < 45%). Subjects will be assessed at baseline and after 4 months. The exercise program will consist of three 60-min exercise sessions/week. The primary endpoints are the effect of exercise on myocardial extracellular volume (ECV), left ventricular (LV) systolic function, LV mass, LV mass-to-volume and LV cardiomyocyte volume. Secondary endpoints include the effect of exercise on vasomotor endothelial function, cardiac sympathetic activity and plasmatic biomarkers. Patients will be allocated in a 2:1 fashion to supervised exercise program or usual care. A total sample size of 90 patients, divided into two groups according to LVEF:HFpEF group (45 patients:30 in the intervention arm and 15 in the control arm) and HFrEF group (45 patients:30 in the intervention arm and 15 in the control arm) - will be necessary to achieve adequate power. CONCLUSION: This will be the first study to evaluate the benefits of a rehabilitation program on cardiac remodeling in HF patients. The unique design of our study may provide unique data to further elucidate the mechanisms involved in reverse cardiac remodeling after exercise in HFpEF and HFrEF patients.
RESUMO
Background Exercise training improves neurovascular control and functional capacity in heart failure (HF) patients. However, the influence of the aetiology on these benefits is unknown. We compared the effects of exercise training on neurovascular control and functional capacity in idiopathic, ischaemic and hypertensive HF patients. Design Subjects consisted of 45 exercise-trained HF patients from our database (2000-2015), aged 40-70 years old, functional class II/III and ejection fraction ≤40%, and they were divided into three groups: idiopathic ( n = 11), ischaemic ( n = 18) and hypertensive ( n = 16). Methods Functional capacity was determined by cardiopulmonary exercise testing. Muscle sympathetic nerve activity (MSNA) was recorded by microneurography. Forearm blood flow (FBF) was measured by venous occlusion plethysmography. Results Four months of exercise training significantly reduced MSNA and significantly increased FBF in all groups. However, the relative reduction in MSNA was greater in hypertensive patients compared with that in idiopathic patients (frequency: -34% vs . -15%, p = 0.01; incidence: -31% vs . -12%, p = 0.02). No differences were found between hypertensive patients and ischaemic patients. The relative increase in FBF was greater in hypertensive patients than in ischaemic and idiopathic patients (42% vs. 15% and 17%, respectively, p = 0.02). The relative increase in forearm vascular conductance was greater in hypertensive patients compared with those in ischaemic and idiopathic patients (57% vs . 13% and 26%, respectively, p = 0.001). Exercise training significantly and similarly increased peak oxygen consumption in all groups. Conclusion The exercise-induced improvement in neurovascular control is more pronounced in hypertensive HF patients than in idiopathic and ischaemic HF patients. The increase in functional capacity is independent of aetiology.
Assuntos
Terapia por Exercício , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/reabilitação , Hipertensão/complicações , Isquemia Miocárdica/complicações , Adulto , Idoso , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/fisiologia , Estudos Retrospectivos , Sistema Nervoso Simpático/fisiopatologia , Resultado do TratamentoRESUMO
BACKGROUND: We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. METHODS: Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. RESULTS: Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. CONCLUSION: Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure.
Assuntos
Estimulação Elétrica/métodos , Tolerância ao Exercício/fisiologia , Insuficiência Cardíaca/terapia , Pacientes Internados , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Sistema Nervoso Simpático/fisiologia , Adolescente , Adulto , Idoso , Feminino , Antebraço/irrigação sanguínea , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pletismografia , Qualidade de Vida , Fluxo Sanguíneo Regional/fisiologia , Adulto JovemRESUMO
Regular exercise and a physically active lifestyle have favorable effects on health. Several issues related to this theme are addressed in this report. A comment on the requirements of personalized exercise medicine and in-depth biological profiling along with the opportunities that they offer is presented. This is followed by a brief overview of the evidence for the contributions of genetic differences to the ability to benefit from regular exercise. Subsequently, studies showing that mutations in TP53 influence exercise capacity in mice and humans are succinctly described. The evidence for effects of exercise on endothelial function in health and disease also is covered. Finally, changes in cardiac and skeletal muscle in response to exercise and their implications for patients with cardiac disease are summarized. Innovative research strategies are needed to define the molecular mechanisms involved in adaptation to exercise and to translate them into useful clinical and public health applications.