Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(8): 4916-4924, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35137738

RESUMO

An extensive exploration of high-pressure phase diagrams of NpHx (x = 1-10) compounds was performed by using swarm-intelligence-based CALYPSO structure searches. We propose five stable hydrogen-rich clathrate phases (P4/nmm-NpH5, Cmcm-NpH7, Fm3̄m-NpH8, P63/mmc-NpH9, and Fm3̄m-NpH10) that are composed of unusual H cages with stoichiometries H20, H24, H29, and H32 in which the H atoms are weakly covalently bonded to one another, with neptunium atoms occupying centers of the cages. The electronic structure analyses show that these predicted hydrogen-rich structures are all metallic phases, and Np-H and H-H bonds are formed by ionic and covalent bond interactions, respectively. The charge transfer from the Np atom plays an important role in the stability of the proposed structures. All hydrogen-rich clathrate structures show superconductivity behavior in their respective stability pressure range. Our work is an important step in understanding the phase stability and bonding behavior of NpHx under extreme conditions and provides a valuable reference for experimental synthesis and identification of cage-like neptunium hydrides.

2.
Inorg Chem ; 60(11): 7660-7669, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018728

RESUMO

Identifying reaction intermediates in gas-phase investigations will provide understanding for the related catalysts in fundamental aspects including bonding interactions of the reaction species, oxidation states (OSs) of the anchored atoms, and reaction mechanisms. Herein, carbon monoxide (CO) oxidation by praseodymium monoxide (PrO) molecules has been investigated as a model reaction in solid argon using matrix-isolation IR spectroscopy and quantum-chemical calculations. Two reaction intermediates, OPr(η1-CO) and OPr(η2-CO), have been trapped and characterized in argon matrixes. The intermediate OPr(η2-CO) shows an extremely low C-O stretching band at 1624.5 cm-1. Quantum-chemistry studies indicate that the bonding in OPr(η1-CO) is described as "donor-acceptor" interactions conforming to the Dewar-Chatt-Duncanson motif. However, the bonding in OPr(η2-CO) results evidently from a combination of dominant ionic forces and normal Lewis "acid-base" interactions. The electron density of the singly occupied bonding orbital is strongly polarized to the CO fragment in OPr(η2-CO). Electronic structure analysis suggests that the two captured species exhibit Pr(III) OSs. Besides, the pathways of CO oxidation have been discussed.

3.
Phys Chem Chem Phys ; 23(2): 878-885, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346754

RESUMO

The effect of atomic hydrogen adsorption on AnO2 (An = Th, U, and Pu) surfaces is studied in the framework of density functional theory and Hubbard-corrected density functional theory. Several adsorption coverages (1/3, 1/2, 2/3, and 1 monolayer) are considered. For the band insulator ThO2, surface metallicity induced by hydrogen adsorption is observed due to the electron donation of the hydrogen to the surface. But this effect is found to be strongly suppressed by electronic correlation for the Mott insulators UO2 and PuO2 because the electrons from the adsorbed hydrogen atoms occupy the localized 5f orbitals of the surface U/Pu atoms.

4.
J Phys Chem A ; 124(40): 8192-8200, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902978

RESUMO

Through matrix isolation infrared spectrometry and quantum chemical calculations, the reactions of laser ablated V, Nb, and Ta with boron trifluoride were investigated in excess solid neon at 4 K. The possible reaction products FBMF2, F2BMF, and BMF3 (M = V, Nb, and Ta) were calculated at the B3LYP, BPW91, and CCSD(T) levels of theory. The B-M bond strength in FBMF2 molecules is confirmed by energy decomposition analysis-natural orbitals for chemical valence calculations, CASSCF calculation, and natural bond orbital analysis, which favors one σ bond and two half π bonds.

5.
Inorg Chem ; 58(7): 4350-4364, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864447

RESUMO

As impurities are virtually impossible to exclude from Pu oxides in realistic environments, understanding the roles of impurities is crucial for the applications and designs of Pu oxides. Here we perform a systematic first-principles DFT + U calculation to find the trends of transition-metal (TM) behaviors in PuO2 in terms of energetics, atomic properties, oxidation states, and electronic structures. The results show that group IV-B elements Ti, Zr, and Hf are energetically and electronically favorable in PuO2 and render the possibilities of forming Pu-TM-O ternary phases. In contrast, the remaining TMs tend to destabilize PuO2 and whether phase segregation or transition occurs largely depends on the redox conditions: oxidation one induces segregation, whereas reduction one facilitates the transition from PuO2 to Pu2O3. On the basis of the correlations between the properties of TMs and their relative stabilities in PuO2, we conclude that the degree of electron match between TMs and Pu plays the decisive role in the stability, as established for the cases of tetravalent elements, whereas some electron-mismatched but energetically stable TMs such as III-B and V-B elements could drive the valence transition of Pu, resulting in the phase instability of PuO2.

6.
Phys Chem Chem Phys ; 21(47): 25962-25975, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31559409

RESUMO

Fluorite-type XO2 (X = Ce, Th, U) have versatile technological and industrial applications, and the behavior of impurities in the oxides is one of the engaging topics for their application. However, the fundamental behaviors of impurities are still lacking. Herein, we conduct a systematic first-principles DFT+U screening to find the trends of transition metal (TM) behaviors in the three dioxides in terms of energetics and electronic states, with a particular focus on the dependency of f electronic states of the hosts. In order to overcome the long-standing bottleneck of determining the true oxidation state of multivalent TMs, Ce and U, a more rigorous method based on counting orbital occupation numbers of f and d orbitals is performed for clarification. The calculated incorporation energies and formation energies of TMs show that the relative stability of TMs in the three XO2 exhibits similar trends, indicative of the dominant roles played by the host oxides with the same crystal structure and very close lattice parameters. On the other hand, the quantitative differences in the stability and electronic state of doped TMs could be mainly attributed to the differences in the electronic structure of host XO2. The 5f electrons in UO2 are more delocalized than 4f in CeO2, suppressing the formation of high oxidation states of TMs in the former. For ThO2 with the negligible f electrons associated with monovalent Th4+, the doped TMs tend to adopt the oxidation states close to TM4+, achieving the electronically matched states. The appearance of a few unusual oxidation states of TMs sheds light on the flexible delocalization-localization mutual transition of f or d valence electrons.

7.
Phys Chem Chem Phys ; 21(9): 4732-4737, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30426992

RESUMO

The nature and extent of the highest oxidation state (HOS) in solid-state actinide compounds are still unexplored compared with those of small molecules, and there is burgeoning interest in studying the actinide-ligand bonding nature in the condensed state. A comprehensive understanding of the electronic structure and unraveling the possibility of a HOS are of paramount importance in solid-state actinide chemistry. Here, we report the physical OS of the early to middle actinides (Th → Cm) in solid-state compounds via a more rigorous quantum mechanical definition of OS under the DFT+U theoretical frameworks for the first time. This work implies that the highest physical OS of the Pu solid ion is PuV in PuO2F and PuOF4, which can be achieved via tuning the ligand, thus improving our knowledge of oxidation states and chemical bonding in high OS solid-state compounds. We highlight the importance of ligand design in terms of the actinide HOS, employing a highly electronegative ligand and showing the capacity to form multiple bonds.

8.
J Chem Phys ; 150(11): 111103, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901987

RESUMO

The metallization of neon remains a controversial problem as there is no consensus in theoretical simulations and no experimental verification. In this work, the insulator-to-metal transition in fcc solid neon at high pressure was revisited with a coupling of the all-electron full-potential linear augmented-plane wave (FP-LAPW) method and the GW correction to avoid the potential unreliability of pseudopotential under high pressure and correct the inaccurate energy gaps caused by local density or generalized gradient approximation of the exchange-correlation. This FP-LAPW + GW calculation predicts that the bandgap closes at a density of 88.3 g/cm3 and a pressure of 208.4 TPa. Moreover, the reported positive pressure dependency of energy gap (increases with increasing density) for solid neon in 1.5-10.0 g/cm3 was confirmed with our FP-LAPW calculations, and the underlying mechanism was first revealed based upon analysis of the charge density distribution and the electron localization function. The results of this research will provide a valuable reference for future high pressure experiments and shed new insight into the planetary interiors.

9.
Phys Chem Chem Phys ; 20(37): 23856-23863, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29999053

RESUMO

As B12 clusters exhibit significant structural stability due to double aromaticity, metal doped-B12 clusters often prefer a half sandwich structure. Herein, we report a systematic theoretical study on the geometric and electronic structures, and chemical bonding of the half sandwich AnB12 (An = Th to Cm) clusters to explore the stability and extent of covalency of the An-B bonds of these actinide borides. We have shown that in the gas-phase clusters, the significant stability of AnB12 is determined by electrostatic and orbital interactions between the An 5f6d7s orbitals and π-type molecular orbitals from B 2p orbitals of the B12 unit. A change-over of An-B bond length from An = Th to Cm is found at An = Pa as a result of actinide contraction combined with weakening An-B bonding due to an energy decrease and orbital localization of the 5f orbitals. Consistently, the oxidation states of the An atoms at first increase from Th(f0)IV to Pa(f0)V, and then due to the 5f-AO contraction, they smoothly decline to U(f2)IV, Np(f4)III and Pu(f5)III, and then eventually to Am(f7)II but Cm(f7)III, both with a half-filled 5f shell.

10.
Phys Chem Chem Phys ; 20(21): 14947, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29780996

RESUMO

Correction for 'Insights into the enhanced Ce[triple bond, length as m-dash]N triple bond in the HCe[triple bond, length as m-dash]N molecule' by Zhen Pu et al., Phys. Chem. Chem. Phys., 2017, 19, 8216-8222.

11.
J Phys Chem A ; 122(14): 3541-3546, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29583003

RESUMO

The activation of ammonia by cerium atom has been investigated in solid argon using infrared spectroscopy and density functional theoretical calculations. The results reveal that the spontaneous formation of CeNH3 complex on annealing is the initial step in the reactions of cerium atoms with ammonia. The CeNH3 complexes rearrange to generate the inserted HCeNH2 molecules on irradiation. A "triplet-singlet" spin conversion occurs along the reaction path in which HCeNH2 (3A″) isomerizes into H2CeNH (1A'). The H2CeNH molecules finally decompose to yield HCeN + H2 upon photolysis. The periodic trend and differences for the M + NH3 (M = Ti, Zr, Hf, Ce, Th) systems are discussed on the basis of the present and previous works. DFT calculations predict that the most stable ground state for HHfNH2 and HThNH2 is singlet due to the stronger relativistic effects in Hf and Th atoms, while that for HTiNH2, HZrNH2, and HCeNH2 is triplet. Besides, the H2-elimination process is different for Ce and M (Ti, Zr, Hf, Th) cases.

12.
Phys Chem Chem Phys ; 19(12): 8216-8222, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28271096

RESUMO

Herein, an experimental study of the vibrational spectra of HCeN was carried out in solid argon, followed by theoretical investigations of molecular structures and the nature of Ce[triple bond, length as m-dash]N bond. The absorption band at 937.7 cm-1 with the 1.0311 14N/15N isotopic shift ratio is characteristic of Ce[triple bond, length as m-dash]N stretching band for HCeN, showing a 94 cm-1 higher shift relative to that of the diatomic CeN molecule. This large frequency shift indicates a much stronger Ce[triple bond, length as m-dash]N bond in HCeN, which is confirmed by DFT calculations. Qualitative orbital interaction and orbital composition analyses suggest that the addition of the H ligand to the Ce center will activate the 4f valence shell and strengthen the covalent bond between Ce and N, which may contribute to enhance the Ce[triple bond, length as m-dash]N triple bond in the HCeN molecule.

13.
J Phys Chem Lett ; 11(8): 2854-2858, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32207978

RESUMO

By combining the particle swarm optimization algorithm with first-principles calculation, the high-pressure phase diagram of Zn-F binary compounds was established. An unexpected stoichiometry of ZnF3 with space group Cccm is thermodynamically stable above 183 GPa. The new structure is fascinating with the appearance of Zn2+[F3]2- units. The stability of the new phase stems from the mixed ionic and covalent chemical bonding in ZnF3. The electronic properties indicate that Zn has a tendency to form high oxidation states under higher pressure. Our work is an important step in understanding the bonding behavior of Zn under extreme conditions and provides a valuable reference for experimental synthesis and identification of ZnF3.

14.
J Phys Condens Matter ; 32(19): 195002, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31940600

RESUMO

We investigate the distribution preference of hydrogen in the α-U/UO2 interface by using the DFT+U method. We find that a monolayer of hydrogen atoms firstly assembles right in the interface between α-U and UO2. Through detailed electronic state analysis, it is revealed that the formation of U-H bonds with uranium atoms at the UO2 side favors this hydrogen atom assembly. The newly formed U-H bonds are similar to the U-O-U superexchange interactions in UO2. The incorporation of hydrogen in either α-U or UO2 is much higher in energy. After formation of two hydrogen monolayers, following hydrogen atoms have no such preference in the interface area, and tend to distribute inside α-U.

15.
RSC Adv ; 9(54): 31398-31405, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527940

RESUMO

Density functional theory (DFT) was used to predict and study protactinium pentoxide (Pa2O5), which presents a fluorite and layered protactinium oxide-type structure. Although the layered structure has been observed with the isostructural transition Nb and Ta metal pentoxides experimentally, the detailed structure and properties of the layered Pa2O5 are not clear and understandable. Our theoretical prediction explored some possible stable structures of the Pa2O5 stoichiometry according to the existing M2O5 structures (where M is an actinide Np or transition Nb, Ta, and V metal) and replacing the M ions with protactinium ions. The structural, mechanical, thermodynamic and electronic properties including lattice parameters, bulk moduli, elastic constants, entropy and band gaps were predicted for all the simulated structures. Pa2O5 in the ß-V2O5 structure was found to be a competitive structure in terms of stability, whereas Pa2O5 in the ζ-Nb2O5 structure was found to be the most stable overall. This is consistent with Sellers's experimental observations. In particular, Pa2O5 in the ζ-Nb2O5 structure is predicted to be charge-transfer insulators. Furthermore, we predict that ζ-Nb2O5-structured Pa2O5 is the most thermodynamically stable under ambient conditions and pressure.

16.
ACS Omega ; 3(10): 13902-13912, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458086

RESUMO

Systematic americyl-hydration cations were investigated theoretically to understand the electronic structures and bonding in [(AmO2)(H2O) n ]2+/1+ (n = 1-6). We obtained the binding energy using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The geometric structures of these species have been investigated in aqueous solution via an implicit solvation model. Computational results reveal that the complexes of five equatorial water molecules coordinated to americyl ions are the most stable due to the enhanced ionic interactions between the AmO2 2+/1+ cation and multiple oxygen atoms as electron donors. As expected, Am-Owater bonds in such series are electrostatic in nature and contain a generally decreasing covalent character when hydration number increases.

17.
Sci Rep ; 7(1): 12167, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939821

RESUMO

The resolution of questions about the existence of condensed plutonium monoxide (PuO) has long been hindered by lack of thermochemical data. Here we perform first-principles calculation to investigate the reaction Pu2O3 + Pu → 3 PuO and find that PuO is thermodynamically unstable under ambient pressure. We also find that pressure could stabilize PuO by strengthening the hybridization between Pu-5f/6d and O-2p states. Moreover, the dynamical stability of NaCl-type PuO is verified by the phonon calculation. Optical properties such as reflectivity are also predicted for the detection of metallic PuO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA