Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(36): e2202577119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037361

RESUMO

Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.


Assuntos
Estenose da Valva Aórtica , Calcinose , Interleucinas , Animais , Anti-Inflamatórios/farmacologia , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Calcinose/tratamento farmacológico , Cálcio/metabolismo , Caspases/metabolismo , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/farmacologia , Proteínas Matrilinas/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese , Receptores de Interleucina-9/genética , Proteínas Recombinantes/farmacologia
2.
Mol Med ; 28(1): 5, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062861

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is the most prevalent heart valve disorder in the elderly. Valvular fibrocalcification is a characteristic pathological change. In diseased valves, monocyte accumulation is evident, and aortic valve interstitial cells (AVICs) display greater fibrogenic and osteogenic activities. However, the impact of activated monocytes on valular fibrocalcification remains unclear. We tested the hypothesis that pro-inflammatory mediators from activated monocytes elevate AVIC fibrogenic and osteogenic activities. METHODS AND RESULTS: Picro-sirius red staining and Alizarin red staining revealed collagen and calcium depositions in cultured human AVICs exposed to conditioned media derived from Pam3CSK4-stimulated monocytes (Pam3 CM). Pam3 CM up-regulated alkaline phosphatase (ALP), an osteogenic biomarker, and extracellular matrix proteins collagen I and matrix metalloproteinase-2 (MMP-2). ELISA analysis identified high levels of RANTES and TNF-α in Pam3 CM. Neutralizing RANTES in the Pam3 CM reduced its effect on collagen I and MMP-2 production in AVICs while neutralizing TNF-α attenuated the effect on AVIC ALP production. In addition, Pam3 CM induced NF-κB and JNK activation. While JNK mediated the effect of Pam3 CM on collagen I and MMP-2 production, NF-κB was critical for the effect of Pam3 CM on ALP production in AVICs. CONCLUSIONS: This study demonstrates that activated monocytes elevate the fibrogenic and osteogenic activities in human AVICs through a paracrine mechanism. TNF-α and RANTES mediate the pro-fibrogenic effect of activated monocytes on AVICs through activation of JNK, and TNF-α also activates NF-κB to elevate AVIC osteogenic activity. The results suggest that infiltrated monocytes elevate AVIC fibrocalcific activity to promote CAVD progression.


Assuntos
Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/etiologia , Calcinose/metabolismo , Suscetibilidade a Doenças , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Valva Aórtica/metabolismo , Biomarcadores , Células Cultivadas , Colágeno/metabolismo , Meios de Cultivo Condicionados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos
3.
Inflamm Res ; 71(5-6): 681-694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411432

RESUMO

OBJECTIVE: Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study. METHODS: Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against ß2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied. RESULTS: AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte ß2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing ß2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture. CONCLUSION: Monocyte ß2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.


Assuntos
Valva Aórtica , Monócitos , Valva Aórtica/metabolismo , Antígenos CD18/metabolismo , Células Cultivadas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Proteínas Matrilinas/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(7): 1631-1636, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137840

RESUMO

Calcific aortic valve disease is a chronic inflammatory process, and aortic valve interstitial cells (AVICs) from diseased aortic valves express greater levels of osteogenic factors in response to proinflammatory stimulation. Here, we report that lower cellular levels of IL-37 in AVICs of diseased human aortic valves likely account for augmented expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP) following stimulation of Toll-like receptor (TLR) 2 or 4. Treatment of diseased AVICs with recombinant human IL-37 suppresses the levels of BMP-2 and ALP as well as calcium deposit formation. In mice, aortic valve thickening is observed when exposed to a TLR4 agonist or a high fat diet for a prolonged period; however, mice expressing human IL-37 exhibit significantly lower BMP-2 levels and less aortic valve thickening when subjected to the same regimens. A high fat diet in mice results in oxidized low-density lipoprotein (oxLDL) deposition in aortic valve leaflets. Moreover, the osteogenic responses in human AVICs induced by oxLDL are suppressed by recombinant IL-37. Mechanistically, reduced osteogenic responses to oxLDL in human AVICs are associated with the ability of IL-37 to inhibit NF-κB and ERK1/2. These findings suggest that augmented expression of osteogenic factors in AVICs of diseased aortic valves from humans is at least partly due to a relative IL-37 deficiency. Because recombinant IL-37 suppresses the osteogenic responses in human AVICs and alleviates aortic valve lesions in mice exposed to high fat diet or a proinflammatory stimulus, IL-37 has therapeutic potential for progressive calcific aortic valve disease.


Assuntos
Estenose da Valva Aórtica/prevenção & controle , Valva Aórtica/efeitos dos fármacos , Calcinose/prevenção & controle , Interleucinas/farmacologia , Osteogênese/efeitos dos fármacos , Idoso , Fosfatase Alcalina/metabolismo , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/metabolismo , Células Cultivadas , Feminino , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas Recombinantes/farmacologia
5.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074942

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is a chronic inflammatory disease that manifests as progressive valvular fibrosis and calcification. An inflammatory milieu in valvular tissue promotes fibrosis and calcification. Aortic valve interstitial cell (AVIC) proliferation and the over-production of the extracellular matrix (ECM) proteins contribute to valvular thickening. However, the mechanism underlying elevated AVIC fibrogenic activity remains unclear. Recently, we observed that AVICs from diseased aortic valves express higher levels of neurotrophin 3 (NT3) and that NT3 exerts pro-osteogenic and pro-fibrogenic effects on human AVICs. HYPOTHESIS: Pro-inflammatory stimuli upregulate NT3 production in AVICs to promote fibrogenic activity in human aortic valves. METHODS AND RESULTS: AVICs were isolated from normal human aortic valves and were treated with lipopolysaccharide (LPS, 0.20 µg/mL). LPS induced TLR4-dependent NT3 production. This effect of LPS was abolished by inhibition of the Akt and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways. The stimulation of TLR4 in human AVICs with LPS resulted in a greater proliferation rate and an upregulated production of matrix metallopeptidases-9 (MMP-9) and collagen III, as well as augmented collagen deposition. Recombinant NT3 promoted AVIC proliferation in a tropomyosin receptor kinase (Trk)-dependent fashion. The neutralization of NT3 or the inhibition of Trk suppressed LPS-induced AVIC fibrogenic activity. CONCLUSIONS: The stimulation of TLR4 in human AVICs upregulates NT3 expression and promotes cell proliferation and collagen deposition. The NT3-Trk cascade plays a critical role in the TLR4-mediated elevation of fibrogenic activity in human AVICs. Upregulated NT3 production by endogenous TLR4 activators may contribute to aortic valve fibrosis associated with CAVD progression.


Assuntos
Cardiopatias Congênitas/patologia , Doenças das Valvas Cardíacas/patologia , Neurotrofina 3/metabolismo , Receptor 4 Toll-Like/metabolismo , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide , Carbazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Feminino , Cardiopatias Congênitas/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Humanos , Alcaloides Indólicos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Regulação para Cima/efeitos dos fármacos
6.
Mol Cell Biochem ; 456(1-2): 145-156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30684134

RESUMO

Secretory phospholipase A2 IIa (sPLA2 IIa) catalyzes the production of multiple inflammatory mediators that influence the development of lung and other cancers. The most potent of these carcinogenic mediators is prostaglandin E2 (PGE2). We hypothesize that sPLA2 IIa inhibition modulates the production of PGE2, and sPLA2 IIa inhibition exerts its antineoplastic effects via downregulation of PGE2 production. We aim to evaluate these relationships via analysis of PGE2-mediated growth regulation pathways. A549 and H1650 lung adenocarcinoma cells were assayed for PGE2 production in the presence of sPLA2 IIa inhibitor. A549 and H1650 cells were treated with PGE2 and immune blotting was performed to assess ICAM-1 expression and STAT-3 activity. PGE2-induced ICAM-1 expression was measured via immunofluorescence. A549 and H1650 cells were treated with PGE2 in the presence of STAT3 inhibitor and assayed for ICAM-1 expression. A549 cells were treated with PGE2 in the presence ICAM-1 blocking antibody and assayed for invasion. PGE2 stimulation significantly increased the invasiveness and proliferation of lung adenocarcinoma (invasion p < 0.05, proliferation p < 0.05 A549 cells, p < 0.005 H1650 cells). sPLA2 IIa inhibition reduced PGE2 secretion (p < 0.05). PGE2 stimulation significantly upregulated the expression of cell adhesion molecule ICAM-1 and the phosphorylation of anti-apoptotic transcription factor STAT3 (p < 0.05). STAT3 inhibition attenuated ICAM-1 expression demonstrating the dependence of ICAM-1 on the STAT3 pathway (p < 0.05). ICAM-1 blockade attenuated the pro-invasive effects of PGE2 (p < 0.05). sPLA2 IIa inhibition attenuates the potent effects of PGE2-induced invasiveness. This is mediated by decreasing pro-inflammatory and invasion-promoting ICAM-1via the STAT-3 pathway. These data further describe how sPLA2 IIa inhibition mechanistically exerts its anticancer effects and support its use as an antineoplastic agent.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Dinoprostona/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Células A549 , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Transcrição STAT3/metabolismo
7.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861929

RESUMO

Aortic valve interstitial cells (AVICs) play a major role in valvular calcification associated with calcific aortic valve disease (CAVD). Although AVICs from diseased valves display a pro-osteogenic phenotype, the underlying mechanism causing this remains unclear. MicroRNA-204 (miR-204) is a negative regulator of osteoblast differentiation. We sought to analyze miR-204 expression in diseased human aortic valves and determine the role of this miR in AVIC osteogenic activity associated with CAVD pathobiology. In situ hybridization and PCR analysis revealed miR-204 deficiency in diseased valves and in AVICs from diseased valves. MiR-204 mimic suppressed alkaline phosphatase (ALP) expression and calcium deposition in AVICs from diseased valves. MiR-204 antagomir enhanced ALP expression in AVICs from normal valves through induction of Runx2 and Osx, and expression of miR-204 antagomir in mouse aortic valves promoted calcium deposition through up-regulation of Runx2 and Osx. Further, miR-204 mimic suppressed the osteogenic responses to TGF-ß1 in AVICs of normal valves. In conclusion, miR-204 deficiency contributes to the mechanism underlying elevated osteogenic activity in diseased aortic valves, and miR-204 is capable of reversing the pro-osteogenic phenotype of AVICs of diseased valves and suppressing AVIC osteogenic response to stimulation. Exogenous miR-204 may have therapeutic potential for inhibiting valvular calcification associated with CAVD progression.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/genética , Regulação para Baixo , MicroRNAs/genética , Osteogênese , Idoso , Animais , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
8.
J Biol Chem ; 292(21): 8657-8666, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28377507

RESUMO

Calcific aortic valve disease (CAVD) is common in the elderly population, but pharmacological interventions for managing valvular calcification are unavailable. Transforming growth factor ß1 (TGF-ß1) and bone morphogenetic protein 2 (BMP-2) induce pro-osteogenic activation of human aortic valve interstitial cells (AVICs) that play an important role in valvular calcification. However, the molecular mechanism underlying pro-osteogenic activation in AVICs is incompletely understood. Here, we investigated an epigenetic regulatory mechanism in human AVIC pro-osteogenic activation induced by TGF-ß1 and BMP-2. Microarray and real-time PCR analyses revealed that microRNA (miR)-486 up-regulation and miR-204 down-regulation were characteristic changes in TGF-ß1- and BMP-2-stimulated normal AVICs and in AVICs from calcified valves. Both TGF-ß1 and BMP-2 down-regulated miR-204 through Smad pathways. Interestingly, an miR-486 antagomir diminished the effect of TGF-ß1 and BMP-2 on miR-204 levels and calcium deposit formation. Furthermore, the miR-486 antagomir increased the expression of Smurf2, a Smad inhibitor, in the presence or absence of TGF-ß1 or BMP-2 stimulation, whereas a miR-486 mimic reduced Smurf2 expression. Smurf2 knockdown augmented TGF-ß1- or BMP-2-induced miR-204 down-regulation and resulted in increased expression of the osteoblastic biomarkers Osx and Runx2. In summary, we found that TGF-ß1 and BMP-2 up-regulate miR-486 and down-regulate miR-204 in human AVICs to promote pro-osteogenic activity and that miR-486 inhibits Smurf2 expression to augment the miR-204 down-regulation. We conclude that the miR-486-Smurf2-Smad loop plays an important role in regulating AVIC pro-osteogenic activation in response to TGF-ß1 or BMP-2. Targeting this regulatory loop may have therapeutic potential for suppressing aortic valve calcification.


Assuntos
Valva Aórtica/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Epigênese Genética , Doenças das Valvas Cardíacas/metabolismo , Osteogênese , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Calcificação Vascular/metabolismo , Idoso , Valva Aórtica/patologia , Células Cultivadas , Regulação para Baixo , Feminino , Doenças das Valvas Cardíacas/patologia , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoblastos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima , Calcificação Vascular/patologia
9.
Arterioscler Thromb Vasc Biol ; 37(7): 1339-1351, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28546218

RESUMO

OBJECTIVE: Extracellular matrix proteinases are implicated in the pathogenesis of calcific aortic valve disease. The ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) enzyme is secreted, matrix-associated metalloendopeptidase, capable of degrading extracellular matrix proteins, particularly matrilin 2. We sought to determine the role of the ADAMTS5/matrilin 2 axis in mediating the phenotype transition of valvular interstitial cells (VICs) associated with calcific aortic valve disease. APPROACH AND RESULTS: Levels of ADAMTS5, matrilin 2, and α-SMA (α-smooth muscle actin) were evaluated in calcified and normal human aortic valve tissues and VICs. Calcified aortic valves have reduced levels of ADAMTS5 and higher levels of matrilin 2 and α-SMA. Treatment of normal VICs with soluble matrilin 2 caused an increase in α-SMA level through Toll-like receptors 2 and 4, which was accompanied by upregulation of runt-related transcription factor 2 and alkaline phosphatase. In addition, ADAMTS5 knockdown in normal VICs enhanced the effect of matrilin 2. Matrilin 2 activated nuclear factor (NF) κB and NF of activated T cells complex 1 and induced the interaction of these 2 NFs. Inhibition of either NF-κB or NF of activated T cells complex 1 suppressed matrilin 2's effect on VIC phenotype change. Knockdown of α-SMA reduced and overexpression of α-SMA enhanced the expression of pro-osteogenic factors and calcium deposit formation in human VICs. CONCLUSIONS: Matrilin 2 induces myofibroblastic transition and elevates pro-osteogenic activity in human VICs via activation of NF-κB and NF of activated T cells complex 1. Myofibroblastic transition in human VICs is an important mechanism of elevating the pro-osteogenic activity. Matrilin 2 accumulation associated with relative ADAMTS5 deficiency may contribute to the mechanism underlying calcific aortic valve disease progression.


Assuntos
Proteína ADAMTS5/deficiência , Estenose da Valva Aórtica/enzimologia , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Calcinose/enzimologia , Transdiferenciação Celular , Miofibroblastos/enzimologia , Osteogênese , Proteína ADAMTS5/genética , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Fosfatase Alcalina/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/genética , Calcinose/patologia , Estudos de Casos e Controles , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Proteínas Matrilinas/metabolismo , Pessoa de Meia-Idade , Miofibroblastos/patologia , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fenótipo , Interferência de RNA , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transfecção
10.
Am J Physiol Cell Physiol ; 312(6): C697-C706, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356268

RESUMO

Calcific aortic valve disease (CAVD) is a leading cardiovascular disorder in the elderly. Diseased aortic valves are characterized by sclerosis (fibrosis) and nodular calcification. Sclerosis, an early pathological change, is caused by aortic valve interstitial cell (AVIC) proliferation and overproduction of extracellular matrix (ECM) proteins. However, the mechanism of aortic valve sclerosis remains unclear. Recently, we observed that diseased human aortic valves overexpress growth factor neurotrophin 3 (NT3). In the present study, we tested the hypothesis that NT3 is a profibrogenic factor to human AVICs. AVICs isolated from normal human aortic valves were cultured in M199 growth medium and treated with recombinant human NT3 (0.10 µg/ml). An exposure to NT3 induced AVIC proliferation, upregulated the production of collagen and matrix metalloproteinase (MMP), and augmented collagen deposition. These changes were abolished by inhibition of the Trk receptors. NT3 induced Akt phosphorylation and increased cyclin D1 protein levels in a Trk receptor-dependent fashion. Inhibition of Akt abrogated the effect of NT3 on cyclin D1 production. Furthermore, inhibition of either Akt or cyclin D1 suppressed NT3-induced cellular proliferation and MMP-9 and collagen production, as well as collagen deposition. Thus, NT3 upregulates cellular proliferation, ECM protein production, and collagen deposition in human AVICs. It exerts these effects through the Trk-Akt-cyclin D1 cascade. NT3 is a profibrogenic mediator in human aortic valve, and overproduction of NT3 by aortic valve tissue may contribute to the mechanism of valvular sclerosis.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/genética , Colágeno/genética , Ciclina D1/genética , Metaloproteinases da Matriz/genética , Neurotrofina 3/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptor trkA/genética , Idoso , Valva Aórtica/metabolismo , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Calcinose/metabolismo , Calcinose/patologia , Calcinose/cirurgia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Ciclina D1/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Metaloproteinases da Matriz/biossíntese , Pessoa de Meia-Idade , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Esclerose , Transdução de Sinais , Substituição da Valva Aórtica Transcateter
11.
Am J Physiol Cell Physiol ; 312(4): C407-C417, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052863

RESUMO

Calcific aortic valve disease is a chronic inflammatory condition, and the inflammatory responses of aortic valve interstitial cells (AVICs) play a critical role in the disease progression. Double-stranded RNA (dsRNA) released from damaged or stressed cells is proinflammatory and may contribute to the mechanism of chronic inflammation observed in diseased aortic valves. The objective of this study is to determine the effect of dsRNA on AVIC inflammatory responses and the underlying mechanism. AVICs from normal human aortic valves were stimulated with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of dsRNA. Poly(I:C) increased the production of IL-6, IL-8, monocyte chemoattractant protein-1, and ICAM-1. Poly(I:C) also induced robust activation of ERK1/2 and NF-κB. Knockdown of Toll-like receptor 3 (TLR3) or Toll-IL-1 receptor domain-containing adapter-inducing IFN-ß (TRIF) suppressed ERK1/2 and NF-κB p65 phosphorylation and reduced inflammatory mediator production induced by poly(I:C). Inhibition of NF-κB, not ERK1/2, reduced inflammatory mediator production in AVICs exposed to poly(I:C). Interestingly, inhibition of NF-κB by prevention of p50 migration failed to suppress inflammatory mediator production. NF-κB p65 intranuclear translocation induced by the TLR4 agonist was reduced by inhibition of p50 migration; however, poly(I:C)-induced p65 translocation was not, although the p65/p50 heterodimer is present in AVICs. Poly(I:C) upregulates the production of multiple inflammatory mediators through the TLR3-TRIF-NF-κB pathway in human AVICs. The NF-κB activated by dsRNA appears not to be the canonical p65/p50 heterodimers.


Assuntos
Valva Aórtica/imunologia , Doenças das Valvas Cardíacas/imunologia , Mediadores da Inflamação/imunologia , NF-kappa B/imunologia , RNA de Cadeia Dupla/imunologia , Calcificação Vascular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Valva Aórtica/citologia , Linhagem Celular , Humanos , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Regulação para Cima/imunologia
12.
Mol Med ; 23: 863-872, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28079228

RESUMO

BACKGROUND: While cardiac functional recovery is attenuated in the elderly following cardiac surgery with obligatory global myocardial ischemia/reperfusion (I/R), the underlying mechanism remains incompletely understood. We observed previously that human and mouse myocardium releases heat shock protein (HSP) 27 during global I/R. Extracellular HSP27 induces myocardial inflammatory response and plays a role in post-ischemic cardiac dysfunction in adult mouse hearts. OBJECTIVE: This study was to determine the role of extracellular HSP27 and Toll-like receptor 4 (TLR4) in the attenuated functional recovery in aging mouse hearts following global I/R. METHODS AND RESULTS: Hearts isolated from aging (18-24 months) and adult (4-6 months) mice were subjected to ex vivo global I/R. Augmented release of HSP27 in aging hearts is associated with greater production of cytokines (TNF-α and IL-1ß) and worse functional recovery. Anti-HSP27 suppressed the inflammatory response and markedly improved functional recovery in aging hearts. Perfusion of recombinant HSP27 to aging hearts resulted in greater cytokine production and more severe contractile depression in comparison to adult hearts. TLR4 deficiency abolished cytokine production and functional injury in aging hearts exposed to recombinant HSP27. Interestingly, aging hearts had higher TLR4 protein levels and displayed enhanced TLR4-mediated NF-κB activation following HSP27 stimulation or I/R. CONCLUSION: Extracellular HSP27 and TLR4 jointly enhance the inflammatory response and hamper functional recovery following I/R in aging hearts. The enhanced inflammatory response to global I/R and attenuated post-ischemic functional recovery in aging hearts is due, at least in part, to augmented myocardial release of HSP27 and elevated myocardial TLR4 levels.

13.
Cytokine ; 95: 55-63, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28237874

RESUMO

Myocardial inflammatory responses to endotoxemia are enhanced in old mice, which results in worse cardiac dysfunction. Anti-inflammatory cytokine interleukin (IL)-37 has a broad effect on innate immunoresponses. We hypothesized that IL-37 suppresses myocardial inflammatory responses to protect cardiac function during endotoxemia in old mice. Old (20-24month) wild-type (WT), and IL-37 transgenic (IL-37tg) mice were treated with lipopolysaccharide (LPS, 0.5mg/kg, iv) or normal saline (0.1ml/mouse, iv). Six hours later, left ventricle (LV) function was assessed using a pressure-volume microcatheter. Levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in plasma and myocardial tissue, as well as mononuclear cell density in the myocardium, were examined. Cardiac microvascular endothelial cells isolated from WT and IL-37tg mice were treated with LPS (0.2µg/ml) for 0.5-24h. Nuclear factor-kappa B (NF-κB) p65 phosphorylation was examined by immunoblotting, and MCP-1 levels in cell culture supernatant was determined using enzyme-linked immunosorbent assay. LV dysfunction in old WT endotoxemic mice was accompanied by up-regulated MCP-1, myocardial accumulation of mononuclear cells and production of TNF-α, IL-1ß and IL-6. Expression of IL-37 suppressed myocardial inflammatory responses to endotoxemia in old mice, resulting in improved LV function. Treatment of old WT endotoxemic mice with recombinant IL-37 also improved LV function. In vitro experiments revealed that cardiac microvascular endothelial cells from IL-37tg mice had attenuated NF-κB activation and MCP-1 production following LPS stimulation. In conclusion, IL-37 is potent to suppress myocardial inflammation and protects against cardiac dysfunction during endotoxemia in old mice.


Assuntos
Envelhecimento/fisiologia , Endotoxemia/fisiopatologia , Interleucina-1/fisiologia , Função Ventricular Esquerda , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Endotoxemia/metabolismo , Endotoxemia/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/farmacologia , Receptor 4 Toll-Like/metabolismo
14.
Biochim Biophys Acta ; 1852(9): 1940-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122822

RESUMO

UNLABELLED: Calcific aortic valve disease (CAVD) is a leading cardiovascular disorder in the elderly. While aortic valve interstitial cells (AVICs) are the main cells that express osteogenic mediators, the molecular mechanism that mediates AVIC osteogenic responses is incompletely understood. This study aims to identify pro-osteogenic factors in human AVICs affected by CAVD. METHODS AND RESULTS: Microarray analysis identified 11 up-regulated genes in AVICs of diseased valves. Among these genes, mRNA levels of neurotrophin 3 (NT3) increased by 2 fold. Higher levels of NT3 protein in diseased aortic valves and diseased AVICs were confirmed by immunofluorescent staining and immunoblotting, respectively. An exposure of AVICs of normal valves to recombinant human NT3 (0.025-0.10µg/mL) up-regulated the production of Runx2, TGF-ß1 and BMP-2 in a dose-dependent fashion. NT3 also promotes calcium deposit formation. The pro-osteogenic effect of NT3 was not affected by neutralization of Toll-like receptor 2 or 4. Interestingly, mRNA encoding neural growth factor receptors (TrkA, TrkB, TrkC and p75 NTR) was detectable in human AVICs. Inhibition of Trk receptors markedly reduced the effects of NT3 on Runx2, TGF-ß1 and BMP-2 production, calcium deposit formation and Akt phosphorylation. Further, inhibition of Akt also reduced the pro-osteogenic effects of NT3. CONCLUSIONS: AVICs of diseased human aortic valves express higher levels of NT3. NT3 up-regulates the production of Runx2, TGF-ß1 and BMP-2, and promotes calcium deposit formation in human AVICs via the Trk-Akt pathway. Thus, NT3 is a novel pro-osteogenic factor in aortic valves and may play a role in valvular calcification.

15.
J Surg Res ; 201(1): 76-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850187

RESUMO

BACKGROUND: Cardiac surgery produces a proinflammatory response characterized by cytokine production. Proinflammatory cytokines such as interleukin 6 (IL-6) may contribute to morbidity and mortality after cardiopulmonary bypass (CPB). Elderly patients undergoing CPB are at increased risk of morbidity and mortality. We hypothesized that patients aged >70 y produce more IL-6 during CPB. METHODS: Twenty-three patients (ages 23-80) undergoing cardiac surgery had blood sampled from the ascending aorta and coronary sinus on initial cannulation for bypass, at 30 min of aortic cross-clamp time, on release of the aortic cross-clamp, and at 20 min after reperfusion. Group 1 patients (n = 8) were aged <60 y, group 2 patients (n = 7) were aged between 60 and 70 y, and group 3 patients (n = 8) were aged >70 y. Plasma levels of tumor necrosis factor-alpha, IL-1, and IL-6 were analyzed. RESULTS: The three groups did not differ with respect to preoperative ejection fraction, New York Heart Association classification, mean aortic cross-clamp time, or mean CPB time. IL-6 levels rose throughout myocardial ischemia and reperfusion in all three age groups. The increase in IL-6 during ischemia and reperfusion in the age group >70 was greater than the increase in younger patients. IL-6 was similar in the coronary sinus and the ascending aorta. CONCLUSIONS: These data suggest that patients aged >70 y undergoing cardiac operations generate more IL-6 during CPB. The increased circulating IL-6 in elderly patients may incite a proinflammatory state that could subsequently underlie the associated higher mortality and morbidity of these procedures in elderly patients.


Assuntos
Envelhecimento/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Interleucina-6/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta , Seio Coronário , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
16.
Biochim Biophys Acta ; 1843(11): 2744-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25101972

RESUMO

Calcific aortic valve disease (CAVD) is a chronic inflammatory condition and affects a large number of elderly people. Aortic valve interstitial cells (AVICs) occupy an important role in valvular calcification and CAVD progression. While pro-inflammatory mechanisms are capable of inducing the osteogenic responses in AVICs, the molecular interaction between pro-inflammatory and pro-osteogenic mechanisms remains poorly understood. This study tested the hypothesis that intercellular adhesion molecule-1 (ICAM-1) plays a role in mediating pro-osteogenic factor expression in human AVICs. AVICs were isolated from normal human aortic valves and cultured in M199 medium. Treatment with leukocyte function-associated factor-1 (LFA-1, an ICAM-1 ligand) up-regulated the expression of bone morphogenetic protein-2 (BMP-2) and resulted in increased alkaline phosphatase activity and formation of calcification nodules. Pre-treatment with lipopolysaccharide (LPS, 0.05µg/ml) increased ICAM-1 levels on cell surfaces and exaggerated the pro-osteogenic response to LFA-1, and neutralization of ICAM-1 suppressed this response. Further, ligation of ICAM-1 by antibody cross-linking also up-regulated BMP-2 expression. Interestingly, LFA-1 elicited Notch1 cleavage and NF-κB activation. Inhibition of NF-κB markedly reduced LFA-1-induced BMP-2 expression, and inhibition of Notch1 cleavage with a γ-secretase inhibitor suppressed LFA-1-induced NF-κB activation and BMP-2 expression. Ligation of ICAM-1 on human AVICs activates the Notch1 pathway. Notch1 up-regulates BMP-2 expression in human AVICs through activation of NF-κB. The results demonstrate a novel role of ICAM-1 in translating a pro-inflammatory signal into a pro-osteogenic response in human AVICs and suggest that ICAM-1 on the surfaces of AVICs contributes to the mechanism of aortic valve calcification.

17.
Mol Med ; 20: 280-9, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24918749

RESUMO

The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais , Proteínas de Choque Térmico , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares , NF-kappa B/metabolismo
18.
Inflamm Res ; 63(9): 703-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24875140

RESUMO

OBJECTIVE: Mononuclear cell infiltration in valvular tissue is one of the characteristics in calcific aortic valve disease. The inflammatory responses of aortic valve interstitial cells (AVICs) play an important role in valvular inflammation. However, it remains unclear what may evoke AVIC inflammatory responses. Accumulation of biglycan has been found in diseased aortic valve leaflets. Soluble biglycan can function as a danger-associated molecular pattern to induce the production of proinflammatory mediators in cultured macrophages. We tested the hypothesis that soluble biglycan induces AVIC production of proinflammatory mediators involved in mononuclear cell infiltration through Toll-like receptor (TLR)-dependent signaling pathways. METHODS: Human AVICs isolated from normal aortic valve leaflets were treated with specific siRNA and neutralizing antibody against TLR2 or TLR4 before biglycan stimulation. The production of ICAM-1 and MCP-1 was assessed. To determine the signaling pathway involved, phosphorylation of ERK1/2 and p38 MAPK was analyzed, and specific inhibitors of ERK1/2 and p38 MAPK were applied. RESULTS: Soluble biglycan induced ICAM-1 expression and MCP-1 release in human AVICs, but had no effect on IL-6 release. TLR4 blockade and knockdown reduced ICAM-1 and MCP-1 production induced by biglycan, while knockdown and neutralization of TLR2 resulted in greater suppression of the inflammatory responses. Biglycan induced the phosphorylation of ERK1/2 and p38 MAPK, but ICAM-1 and MCP-1 production was reduced only by inhibition of the ERK1/2 pathway. Further, inhibition of ERK1/2 attenuated NF-κB activation following biglycan treatment. CONCLUSIONS: Soluble biglycan induces the expression of ICAM-1 and MCP-1 in human AVICs through TLR2 and TLR4 and requires activation of the ERK1/2 pathway. AVIC inflammatory responses induced by soluble biglycan may contribute to the mechanism of chronic inflammation associated with calcific aortic valve disease.


Assuntos
Valva Aórtica/citologia , Biglicano/farmacologia , Quimiocina CCL2/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , RNA Interferente Pequeno/genética , Solubilidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Surg Res ; 187(1): 19-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24360118

RESUMO

BACKGROUND: Intercellular adhesion molecule-1 (ICAM-1) modulates cell-cell adhesion and is a receptor for cognate ligands on leukocytes. Upregulation of ICAM-1 has been demonstrated in malignant transformation of adenomas and is associated with poor prognosis for many malignancies. ICAM-1 is upregulated on the invasive front of pancreatic metastases and melanomas. These data suggest that the upregulated ICAM-1 expression promotes malignant progression. We hypothesize that the downregulation of ICAM-1 will mitigate tumor progression. METHODS: Mouse colon adenocarcinoma cells (MC38) were evaluated for the expression of ICAM-1 using Western immunoblot analysis. Short hairpin RNA (shRNA) transduction was used to downregulate ICAM-1. Tumor invasion determined via a modified Boyden chamber was used as a surrogate of tumor progression examining MC38 cells, MC38 ICAM-1 knockdowns, and MC38 transduced with vehicle control. The cells were cultured in full media for 24 h and serum-starved for 24 h. A total of 5 × 10(4) cells were plated and allowed to migrate for 24 h using full media with 10% fetal bovine serum as a chemoattractant. Inserts were fixed and stained with crystal violet. Blinded investigators counted the cells using a stereomicroscope. Statistical analysis was performed by analysis of variance with Fischer protected least significant difference and a P value of <0.05 was considered statistically significant. RESULTS: ICAM-1 was constitutively expressed on MC38 cells. Transduction with anti-ICAM-1 shRNA vector downregulated ICAM-1 protein expression by 30% according to the Western blot analysis (P < 0.03) and decreased ICAM-1 messenger RNA expression by 70% according to the reverse transcription-polymerase chain reaction. shRNA knockdown cells had a significant reduction in invasion >45% (P < 0.03). There were no significant differences between the invasion rates of MC38 and MC38 vehicle controls. CONCLUSIONS: Downregulation of ICAM-1 mitigates MC38 invasion. These data suggest that targeted downregulation of tumor ICAM-1 is a potential therapeutic target.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Progressão da Doença , Regulação para Baixo/fisiologia , Molécula 1 de Adesão Intercelular/genética , Macrófagos/patologia , Camundongos , Invasividade Neoplásica/patologia , Neutrófilos/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
20.
Arterioscler Thromb Vasc Biol ; 33(7): 1580-90, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640488

RESUMO

OBJECTIVE: Calcific aortic valve disease is a leading cardiovascular disease in the elderly, and progressive calcification results in the failure of valvular function. Aortic valve interstitial cells (AVICs) from stenotic valves express higher levels of bone morphogenetic protein-2 in response to Toll-like receptor 4 stimulation. We recently found that Toll-like receptor 4 interacts with Notch1 in human AVICs. This study tests the hypothesis that Notch1 promotes the pro-osteogenic response of human AVICs. APPROACH AND RESULTS: AVICs isolated from diseased human valves expressed higher levels of bone morphogenetic protein-2 and alkaline phosphatase after lipopolysaccharide stimulation. The augmented pro-osteogenic response is associated with elevated cellular levels of Notch1 and enhanced Notch1 cleavage in response to lipopolysaccharide stimulation. Inhibition or silencing of Notch1 suppressed the pro-osteogenic response in diseased cells, and the Notch 1 ligand, Jagged1, enhanced the response in AVICs isolated from normal human valves. Interestingly, extracellular signal-regulated protein kinases 1/2 (ERK1/2) and nuclear factor-κB phosphorylation induced by lipopolysaccharide was markedly reduced by inhibition or silencing of Notch1 and enhanced by Jagged1. Inhibition of ERK1/2 or nuclear factor-κB also reduced bone morphogenetic protein-2 and alkaline phosphatase expression induced by lipopolysaccharide. CONCLUSIONS: Notch1 mediates the pro-osteogenic response to Toll-like receptor 4 stimulation in human AVICs. Elevated Notch1 levels and enhanced Notch1 activation play a major role in augmentation of the pro-osteogenic response of AVICs of stenotic valves through modulation of ERK1/2 and nuclear factor-κB activation. These pathways could be potential therapeutic targets for prevention of the progression of calcific aortic valve disease.


Assuntos
Estenose da Valva Aórtica/enzimologia , Valva Aórtica/enzimologia , Calcinose/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteogênese , Receptor Notch1/metabolismo , Idoso , Fosfatase Alcalina/metabolismo , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Lipopolissacarídeos/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Osteogênese/efeitos dos fármacos , Fosforilação , Interferência de RNA , Receptor Notch1/genética , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA