Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 148: 50-62, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889002

RESUMO

Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by pulmonary arterial vasoconstriction and remodeling. Src family tyrosine kinases, including Fyn, play critical roles in vascular remodeling via the inhibition of STAT3 signaling. EPA is known to inhibit Fyn kinase activity. This study investigated the therapeutic potential and underlying mechanisms of EPA and its metabolite, resolvin E1 (RvE1), to treat PAH using monocrotaline-induced PAH model rats (MCT-PAH), human pulmonary artery endothelial cells (HPAECs), and human pulmonary artery smooth muscle cells (HPASMCs). Administration of EPA 1 and 2 weeks after MCT injection both ameliorated right ventricular hypertrophy, remodeling and dysfunction, and medial wall thickening of the pulmonary arteries and prolonged survival in MCT-PAH rats. EPA attenuated the enhanced contractile response to 5-hydroxytryptamine in isolated pulmonary arteries of MCT-PAH rats. Mechanistically, the treatment with EPA and RvE1 or the introduction of dominant-negative Fyn prevented TGF-ß2-induced endothelial-to-mesenchymal transition and IL-6-induced phosphorylation of STAT3 in cultured HPAECs. EPA and RvE1 suppressed Src family kinases' activity as evaluated by their phosphorylation status in cultured HPAECs and HPASMCs. EPA and RvE1 suppressed vasocontraction of rat and human PA. Furthermore, EPA and RvE1 inhibited the enhanced proliferation and activity of Src family kinases in HPASMCs derived from patients with idiopathic PAH. EPA ameliorated PAH's pathophysiology by mitigating vascular remodeling and vasoconstriction, probably inhibiting Src family kinases, especially Fyn. Thus, EPA is considered a potent therapeutic agent for the treatment of PAH.


Assuntos
Ácido Eicosapentaenoico/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/enzimologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/fisiopatologia , Interleucina-6/farmacologia , Masculino , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Mesoderma/fisiopatologia , Monocrotalina , Contração Miocárdica/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Análise de Sobrevida , Fator de Crescimento Transformador beta2/farmacologia , Vasodilatação/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA