Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2310813, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700050

RESUMO

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
J Am Chem Soc ; 145(32): 17902-17911, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534987

RESUMO

The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.

3.
Small ; 19(27): e2300241, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932894

RESUMO

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

4.
Chemistry ; 23(46): 10983-10986, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28639279

RESUMO

Nanosized materials are expected to play a unique role in the development of future catalytic processes. Herein, pre-prepared and geometrically well-defined amorphous silica spheres are densified into silica-rich zeolites with nanosized dimensions. After the densification, the obtained nanosized zeolites exhibit the same spherical morphology like the starting precursor but characterized by a drastically reduced size, higher density, and high crystallinity. The phase transformation into crystalline zeolite material and the densification effect are achieved through a well-controlled steam-assisted treatment of the larger precursor particles so that the transformation process proceeds always towards the center of the spheres, just like a shrinking process. Furthermore, this procedure is applicable also to commercially available silica particles, as well as aluminum-containing systems (precursors) leading to acidic nano-catalysts with improved catalytic performance.

5.
Adv Mater ; 35(44): e2305980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714142

RESUMO

Metal-organic frameworks (MOFs) are microporous adsorbents for high-throughput gas separation. Such materials exhibit distinct adsorption characteristics owing to the flexibility of the crystal framework in a nanoparticle, which can be different from its bulk crystal. However, for practical applications, such particles need to be compacted into macroscopic pellets, creating mass-transport limitations. In this work, this problem is addressed by forming materials with structural hierarchy, using a supraparticle-based approach. Spherical supraparticles composed of nanosized MOF particles are fabricated by emulsion templating and they are used as the structural component forming a macroscopic material. Zeolitic imidazolate framework-8 (ZIF-8) particles are used as a model system and the gas-adsorption kinetics of the hierarchical material are compared with conventional pellets without structural hierarchy. It is demonstrated that a pellet packed with supraparticles exhibits a 30 times faster adsorption rate compared to an unstructured ZIF-8 powder pellet. These results underline the importance of controlling structural hierarchy to maximize the performance of existing materials. In the hierarchical MOFs, large macropores between the supraparticles, smaller macropores between individual ZIF-8 primary particles, and micropores inherent to the ZIF-8 framework collude to combine large surface area, defined adsorption sites, and efficient mass transport to enhance performance.

6.
J Colloid Interface Sci ; 648: 633-643, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321082

RESUMO

Most analytical techniques used to study the surface chemical properties of superparamagnetic iron oxide nanoparticles (SPIONs) are barely suitable for in situ investigations in liquids, where SPIONs are mostly applied for hyperthermia therapy, diagnostic biosensing, magnetic particle imaging or water purification. Magnetic particle spectroscopy (MPS) can resolve changes in magnetic interactions of SPIONs within seconds at ambient conditions. Herein, we show that by adding mono- and divalent cations to citric acid capped SPIONs, the degree of agglomeration can be utilized to study the selectivity of cations towards surface coordination motifs via MPS. A favored chelate agent, like ethylenediaminetetraacetic acid (EDTA) for divalent cations, removes cations from coordination sites on the SPION surface and causes redispersion of agglomerates. The magnetic determination thereof represents what we call a "magnetically indicated complexometric titration". The relevance of agglomerate sizes for the MPS signal response is studied on a model system of SPIONs and the surfactant cetrimonium bromide (CTAB). Analytical ultracentrifugation (AUC) and cryogenic transmission electron microscopy (cryo-TEM) reveal that large micron-sized agglomerates are required to significantly change the MPS signal response. With this work, a fast and easy-to-use characterization method to determine surface coordination motifs of magnetic nanoparticles in optically dense media is demonstrated.

7.
Mater Horiz ; 10(11): 4960-4967, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37610262

RESUMO

A novel GaPt-based supported catalytically active liquid metal solution (SCALMS) material is developed by exploiting the suprabead concept: Supraparticles, i.e. micrometer-sized particles composed of nanoparticles assembled by spray-drying, are bonded to millimeter-sized beads. The suprabeads combine macroscale size with catalytic properties of nanoscale GaPt particles entrapped in their silica framework.

8.
ACS Nano ; 17(6): 5785-5798, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36920091

RESUMO

Multidimensional particle properties determine the product properties in numerous advanced applications. Accurate and statistically meaningful measurements of complex particles and their multidimensional distributions are highly challenging but strongly needed. 2D particle size distributions of plasmonic nanoparticles of complex regular shape can be obtained from analytical ultracentrifugation experiments via the optical back coupling method. A workflow for the calculation of frictional properties of arbitrarily shaped nanoparticles was developed based on bead shell models and applied to gold bipyramids with a pentagonal cross-section. The obtained 2D particle length-diameter distributions and the reduced cumulative 1D length and diameter distributions were compared to transmission electron microscopy measurements. While we find very good agreement for most measurements, the obtained length and diameter distributions were shifted by a few nanometers for some samples. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron tomography, and finite element modeling indicate that the shift originated from a slight mismatch between the assumed shape of the simulated perfect bipyramids and the real particle shape and composition due to the presence of silver in the particles. This study demonstrates the feasibility of the applied techniques for complex shape analysis of nanoparticle ensembles with unmatched particle count numbers.

9.
Nat Commun ; 9(1): 5259, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30532018

RESUMO

Clusters in systems as diverse as metal atoms, virus proteins, noble gases, and nucleons have properties that depend sensitively on the number of constituent particles. Certain numbers are termed 'magic' because they grant the system with closed shells and exceptional stability. To this point, magic number clusters have been exclusively found with attractive interactions as present between atoms. Here we show that magic number clusters exist in a confined soft matter system with negligible interactions. Colloidal particles in an emulsion droplet spontaneously organize into a series of clusters with precisely defined shell structures. Crucially, free energy calculations demonstrate that colloidal clusters with magic numbers possess higher thermodynamic stability than those off magic numbers. A complex kinetic pathway is responsible for the efficiency of this system in finding its minimum free energy configuration. Targeting similar magic number states is a strategy towards unique configurations in finite self-organizing systems across the scales.

10.
Sci Adv ; 3(4): e1603119, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508050

RESUMO

The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.


Assuntos
Borboletas , Retículo Endoplasmático , Membranas Intracelulares , Nanoestruturas/ultraestrutura , Pigmentos Biológicos/metabolismo , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA