Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Neurourol Urodyn ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315716

RESUMO

INTRODUCTION: One of the main causes of a neurogenic bladder is spinal cord injury (SCI),(SCI), which induces little or no bladder reflex activity. Because of this alteration, there is an increased risk of developing urinary tract infections and kidney damage. Gonadotropin-releasing hormone (GnRH) treatment has been shown to improve micturition in a rat model of SCI. AIM: The present study was aimed at determining whether GnRH administration is capable to reduce bladder and kidney damage in rats with SCI. METHODS: Ovariectomized female Wistar rats were divided into three groups: sham, SCI with saline solution (SCI), and SCI treated with GnRH (SCI+GnRH) for 6 weeks. SCI was induced by compression at the T10 spinal level. At the end of the experiment, bladders and kidneys were processed for morphological and immunofluorescence analysis. For morphometric analysis, the thickness of the urothelium and the muscular layer of the bladder was measured, as well as the intensity of staining related to collagen in the kidney. RESULTS: At the end of the experiment, all animals in the sham group showed normal urination (100%), in contrast, the percentage of untreated injured rats (SCI) that did not require manual stimulation for micturition was 19%, while the treated group (SCI+GnRH) was 68%. A significative increase in bladder weight, urothelial and muscle thickness, and collagen-related coloration in the kidney was observed in SCI when compared to sham rats. CONCLUSION: GnRH administration decreased damage to the urinary bladder and kidneys after SCI in rats. These results suggest that this hormone could be a potential preventive treatment for SCI patients at risk of neurogenic bladder and kidney damage. TRIAL REGISTRATION: Not applicable.

2.
Gen Comp Endocrinol ; 356: 114579, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964422

RESUMO

The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of Klfs 6, 7, and 13 decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of Klf9 strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of Klfs 6 and 7 expression exclusively in the zebrafish retina, while Klfs 9 and 13 mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of Klf6 transiently increase in the retinas of both zebrafish and mice, whereas those of Klf7 decrease later after optic nerve injury. In addition, the analysis revealed that the expression of Klf9 decreases, while that of Klf13 increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice. Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.


Assuntos
Fatores de Transcrição Kruppel-Like , Retina , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Retina/metabolismo , Camundongos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/genética , Regeneração Nervosa/fisiologia , Regeneração Nervosa/genética
3.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446365

RESUMO

The Krüppel-like factor 13 (KLF13) has emerged as an important transcription factor involved in essential processes of the central nervous system (CNS). It predominantly functions as a transcriptional repressor, impacting the activity of several signaling pathways with essential roles in the CNS, including the JAK/STAT pathway, which is the canonical mediator of growth hormone (GH) signaling. It is now recognized that GH has important actions as a neurotrophic factor. Therefore, we analyzed the effects of KLF13 on the activity of the JAK/STAT signaling pathway in the hippocampus-derived cell line HT22. Results showed that KLF13 directly regulates the expression of several genes involved in the JAK-STAT pathway, including Jak1, Jak2, Jak3, and Socs1, by associating with their proximal gene promoters. In addition, it was found that in KLF13-deficient HT22 neurons, the expression of Jak1, Stat3, Socs1, Socs3, and Igf1 was dysregulated, exhibiting mRNA levels that went up to 7-fold higher than the control cell line. KLF13 displayed a differential effect on the GH-induced JAK/STAT pathway activity, decreasing the STAT3 branch while enhancing the STAT5 branch. In KLF13-deficient HT22 cells, the activity of the STAT3 branch was enhanced, mediating the GH-dependent augmented expression of the JAK/STAT output genes Socs1, Socs3, Igf1, and Bdnf. Furthermore, GH treatment increased both the nuclear content of KLF13 and Klf13 mRNA levels, suggesting that KLF13 could be part of the mechanisms that maintain the homeostatic state of this pathway. These findings support the notion that KLF13 is a regulator of JAK/STAT activity.


Assuntos
Janus Quinases , Transdução de Sinais , Janus Quinases/genética , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232848

RESUMO

Several motor, sensory, cognitive, and behavioral dysfunctions are associated with neural lesions occurring after a hypoxic injury (HI) in preterm infants. Growth hormone (GH) expression is upregulated in several brain areas when exposed to HI conditions, suggesting actions as a local neurotrophic factor. It is known that GH, either exogenous and/or locally expressed, exerts neuroprotective and regenerative actions in cerebellar neurons in response to HI. However, it is still controversial whether GH can cross the blood-brain barrier (BBB), and if its effects are exerted directly or if they are mediated by other neurotrophic factors. Here, we found that in ovo microinjection of Cy3-labeled chicken GH resulted in a wide distribution of fluorescence within several brain areas in the chicken embryo (choroid plexus, cortex, hypothalamus, periventricular areas, hippocampus, and cerebellum) in both normoxic and hypoxic conditions. In the cerebellum, Cy3-GH and GH receptor (GHR) co-localized in the granular and Purkinje layers and in deep cerebellar nuclei under hypoxic conditions, suggesting direct actions. Histological analysis showed that hypoxia provoked a significant modification in the size and organization of cerebellar layers; however, GH administration restored the width of external granular layer (EGL) and molecular layer (ML) and improved the Purkinje and granular neurons survival. Additionally, GH treatment provoked a significant reduction in apoptosis and lipoperoxidation; decreased the mRNA expression of the inflammatory mediators (TNFα, IL-6, IL-1ß, and iNOS); and upregulated the expression of several neurotrophic factors (IGF-1, VEGF, and BDNF). Interestingly, we also found an upregulation of cerebellar GH and GHR mRNA expression, which suggests the existence of an endogenous protective mechanism in response to hypoxia. Overall, the results demonstrate that, in the chicken embryo exposed to hypoxia, GH crosses the BBB and reaches the cerebellum, where it exerts antiapoptotic, antioxidative, anti-inflammatory, neuroprotective, and neuroregenerative actions.


Assuntos
Proteínas Aviárias/metabolismo , Hormônio do Crescimento/metabolismo , Fármacos Neuroprotetores , Animais , Barreira Hematoencefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Embrião de Galinha , Galinhas/metabolismo , Humanos , Hipóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Mediadores da Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012320

RESUMO

Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.


Assuntos
Hormônio do Crescimento Humano , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Animais Recém-Nascidos , Embrião de Galinha , Galinhas/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/tratamento farmacológico , Mamíferos/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Neural Plast ; 2021: 9990166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567109

RESUMO

As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.


Assuntos
Hipóxia Celular/fisiologia , Glucose/deficiência , Hormônio do Crescimento/farmacologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Galinhas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Oxigênio/metabolismo
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093298

RESUMO

It is known that growth hormone (GH) is expressed in immune cells, where it exerts immunomodulatory effects. However, the mechanisms of expression and release of GH in the immune system remain unclear. We analyzed the effect of growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), ghrelin (GHRL), and somatostatin (SST) upon GH mRNA expression, intracellular and released GH, Ser133-phosphorylation of CREB (pCREBS133), intracellular Ca2+ levels, as well as B-cell activating factor (BAFF) mRNA expression in bursal B-lymphocytes (BBLs) cell cultures since several GH secretagogues, as well as their corresponding receptors (-R), are expressed in B-lymphocytes of several species. The expression of TRH/TRH-R, ghrelin/GHS-R1a, and SST/SST-Rs (Subtypes 1 to 5) was observed in BBLs by RT-PCR and immunocytochemistry (ICC), whereas GHRH/GHRH-R were absent in these cells. We found that TRH treatment significantly increased local GH mRNA expression and CREB phosphorylation. Conversely, SST decreased GH mRNA expression. Additionally, when added together, SST prevented TRH-induced GH mRNA expression, but no changes were observed in pCREBS133 levels. Furthermore, TRH stimulated GH release to the culture media, while SST increased the intracellular content of this hormone. Interestingly, SST inhibited TRH-induced GH release in a dose-dependent manner. The coaddition of TRH and SST decreased the intracellular content of GH. After 10 min. of incubation with either TRH or SST, the intracellular calcium levels significantly decreased, but they were increased at 60 min. However, the combined treatment with both peptides maintained the Ca2+ levels reduced up to 60-min. of incubation. On the other hand, BAFF cytokine mRNA expression was significantly increased by TRH administration. Altogether, our results suggest that TRH and SST are implicated in the regulation of GH expression and release in BBL cultures, which also involve changes in pCREBS133 and intracellular Ca2+ concentration. It is likely that TRH, SST, and GH exert autocrine/paracrine immunomodulatory actions and participate in the maturation of chicken BBLs.


Assuntos
Proteínas Aviárias/imunologia , Linfócitos B/imunologia , Bolsa de Fabricius/imunologia , Galinhas/imunologia , Grelina/imunologia , Hormônio Liberador de Hormônio do Crescimento/imunologia , Hormônio do Crescimento/imunologia , Somatostatina/imunologia , Hormônio Liberador de Tireotropina/imunologia , Animais , Linfócitos B/citologia , Bolsa de Fabricius/citologia , Técnicas de Cultura de Células , Células Cultivadas
8.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383827

RESUMO

It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.


Assuntos
Cerebelo/metabolismo , Hormônio do Crescimento/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neuroproteção , Animais , Apoptose , Biomarcadores , Sobrevivência Celular , Células Cultivadas , Cerebelo/irrigação sanguínea , Galinhas , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/etiologia , Necrose , Neurônios/metabolismo , Neuroproteção/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509934

RESUMO

In addition to its role as an endocrine messenger, growth hormone (GH) also acts as a neurotrophic factor in the central nervous system (CNS), whose effects are involved in neuroprotection, axonal growth, and synaptogenic modulation. An increasing amount of clinical evidence shows a beneficial effect of GH treatment in patients with brain trauma, stroke, spinal cord injury, impaired cognitive function, and neurodegenerative processes. In response to injury, Müller cells transdifferentiate into neural progenitors and proliferate, which constitutes an early regenerative process in the chicken retina. In this work, we studied the long-term protective effect of GH after causing severe excitotoxic damage in the retina. Thus, an acute neural injury was induced via the intravitreal injection of kainic acid (KA, 20 µg), which was followed by chronic administration of GH (10 injections [300 ng] over 21 days). Damage provoked a severe disruption of several retinal layers. However, in KA-damaged retinas treated with GH, we observed a significant restoration of the inner plexiform layer (IPL, 2.4-fold) and inner nuclear layer (INL, 1.5-fold) thickness and a general improvement of the retinal structure. In addition, we also observed an increase in the expression of several genes involved in important regenerative pathways, including: synaptogenic markers (DLG1, NRXN1, GAP43); glutamate receptor subunits (NR1 and GRIK4); pro-survival factors (BDNF, Bcl-2 and TNF-R2); and Notch signaling proteins (Notch1 and Hes5). Interestingly, Müller cell transdifferentiation markers (Sox2 and FGF2) were upregulated by this long-term chronic GH treatment. These results are consistent with a significant increase in the number of BrdU-positive cells observed in the KA-damaged retina, which was induced by GH administration. Our data suggest that GH is able to facilitate the early proliferative response of the injured retina and enhance the regeneration of neurite interconnections.


Assuntos
Hormônio do Crescimento/farmacologia , Ácido Caínico/toxicidade , Regeneração/efeitos dos fármacos , Retina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/genética , Embrião de Galinha , Galinhas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurogênese/fisiologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Receptor Notch1/genética , Regeneração/genética , Regeneração/fisiologia , Retina/metabolismo , Retina/fisiopatologia , Fatores de Transcrição SOXB1/genética
10.
Exp Eye Res ; 169: 157-169, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407222

RESUMO

The human growth hormone (GH) locus is comprised by two GH (GH1 and GH2) genes and three chorionic somatomammotropin (CSH1, CSH2 and CSH-L) genes. While GH1 is expressed in the pituitary gland, the rest are expressed in the placenta. However, GH1 is also expressed in several extrapituitary tissues, including the eye. So to understand the role of this hormone in the eye we used the baboon (Papio hamadryas), that like humans has a multigenic GH locus; we set up to investigate the expression and regulation of GH locus in adult and fetal baboon ocular tissues. We searched in baboon ocular tissues the expression of GH1, GH2, CSH1/2, Pit1 (pituitary transcription factor 1), GHR (growth hormone receptor), GHRH (growth hormone releasing hormone), GHRHR (growth hormone releasing hormone receptor), SST (somatostatin), SSTR1 (somatostatin receptor 1), SSTR2 (somatostatin receptor 2), SSTR3 (somatostatin receptor 3), SSTR4 (somatostatin receptor 4), and SSTR5 (somatostatin receptor 5) mRNA transcripts and derived proteins, by qPCR and immunofluorescence assays, respectively. The transcripts found were characterized by cDNA cloning and sequencing, having found only the one belonging to GH1 gene, mainly in the retina/choroid tissues. Through immunofluorescence assays the presence of GH1 and GHR proteins was confirmed in several retinal cell layers. Among the possible neuroendocrine regulators that may control local GH1 expression are GHRH and SST, since their mRNAs and proteins were found mainly in the retina/choroid tissues, as well as their corresponding receptors (GHRH and SSTR1-SSTR5). None of the ocular tissues express Pit1, so gene expression of GH1 in baboon eye could be independent of Pit1. We conclude that to understand the regulation of GH in the human eye, the baboon offers a very good experimental model.


Assuntos
Olho/metabolismo , Regulação da Expressão Gênica/fisiologia , Hormônio do Crescimento/genética , Animais , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Papio hamadryas , Hipófise/metabolismo , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Somatotropina/genética
11.
Gen Comp Endocrinol ; 265: 111-120, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454595

RESUMO

There is increasing evidence that suggests a possible role for GH in retinal development and synaptogenesis. While our previous studies have focused largely on embryonic retinal ganglion cells (RGCs), our current study demonstrates that GH has a synaptogenic effect in retinal primary cell cultures, increasing the abundance of both pre- (SNAP25) and post- (PSD95) synaptic proteins. In the neonatal chick, kainate (KA) treatment was found to damage retinal synapses and abrogate GH expression. In response to damage, an increase in Cy3-GH internalization into RGCs was observed when administered shortly before or after damage. This increase in internalization also correlated with increase in PSD95 expression, suggesting a neuroprotective effect on the dendritic trees of RGCs and the inner plexiform layer (IPL). In addition, we observed the presence of PSD95 positive Müller glia, which may suggest GH is having a neuroregenerative effect in the kainate-damaged retina. This work puts forth further evidence that GH acts as a synaptogenic modulator in the chick retina and opens a new possibility for the use of GH in retinal regeneration research.


Assuntos
Dendritos/metabolismo , Hormônio do Crescimento/farmacologia , Ácido Caínico/toxicidade , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Retina/citologia , Sinapses/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Células Cultivadas , Galinhas/metabolismo , Dendritos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Neuroproteção/efeitos dos fármacos , Sinapses/efeitos dos fármacos
12.
Gen Comp Endocrinol ; 255: 90-101, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974369

RESUMO

The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/genética , Iguanas/genética , Fator de Crescimento Insulin-Like I/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Somatostatina/genética , Hormônio Liberador de Tireotropina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Hormônio Liberador de Hormônio do Crescimento/química , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/metabolismo , Filogenia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Hormônio Liberador de Tireotropina/química , Hormônio Liberador de Tireotropina/metabolismo
13.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373545

RESUMO

This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio do Crescimento/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Animais , Sistema Nervoso Central/metabolismo , Quimioterapia Combinada , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/uso terapêutico , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento/uso terapêutico , Humanos , Fármacos Neuroprotetores/administração & dosagem
14.
Gen Comp Endocrinol ; 234: 81-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828817

RESUMO

Comparative studies have previously established that the eye is an extrapituitary site of growth hormone (GH) production and action in fish, amphibia, birds and mammals. In this review more recent literature and original data in this field are considered.


Assuntos
Olho/metabolismo , Hormônio do Crescimento/metabolismo , Animais
15.
Gen Comp Endocrinol ; 234: 57-67, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27064058

RESUMO

It is known that growth hormone (GH) is expressed in extrapituitary tissues, including the nervous system and ocular tissues, where it is involved in autocrine/paracrine actions related to cell survival and anti-apoptosis in several vertebrates. Little is known, however, in reptiles, so we analyzed the expression and distribution of GH in the eye of green iguana and its potential neuroprotective role in retinas that were damaged by the intraocular administration of kainic acid (KA). It was found, by Western blotting, that GH-immunoreactivity (GH-IR) was expressed as two isoforms (15 and 26kDa, under reducing conditions) in cornea, vitreous, retina, crystalline, iris and sclera, in varying proportions. Also, two bands for the growth hormone receptor (GHR)-IR were observed (70 and 44kDa, respectively) in the same tissues. By immunofluorescence, GH-IR was found in neurons present in several layers of the neuroretina (inner nuclear [INL], outer nuclear [ONL] and ganglion cell [GCL] layers) as determined by its co-existence with NeuN, but not in glial cells. In addition, GH and GHR co-expression was found in the same cells, suggesting paracrine/autocrine interactions. KA administration induced retinal excitotoxic damage, as determined by a significant reduction of the cell density and an increase in the appearance of apoptotic cells in the INL and GCL. In response to KA injury, both endogenous GH and Insulin-like Growth Factor I (IGF-I) expression were increased by 70±1.8% and 33.3±16%, respectively. The addition of exogenous GH significantly prevented the retinal damage produced by the loss of cytoarchitecture and cell density in the GCL (from 4.9±0.79 in the control, to 1.45±0.2 with KA, to 6.35±0.49cell/mm(2) with KA+GH) and in the INL (19.12±1.6, 10.05±1.9, 21.0±0.8cell/mm(2), respectively) generated by the long-term effect of 1mM KA intraocular administration. The co-incubation with a specific anti-GH antibody, however, blocked the protective effect of GH in GCL (1.4±0.23cell/mm(2)) and INL (11.35±1.06), respectively. Furthermore, added GH induced an increase of 90±14% in the retinal IGF-I concentration and the anti-GH antibody also blocked this effect. These results indicate that GH and GHR are expressed in the iguana eye and may be able to exert, either directly of mediated by IGF-I, a protective mechanism in neuroretinas that suffered damage by the administration of kainic acid.


Assuntos
Hormônio do Crescimento/metabolismo , Ácido Caínico/metabolismo , Neurônios/metabolismo , Retina/metabolismo , Animais , Iguanas
16.
Gen Comp Endocrinol ; 234: 151-60, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036926

RESUMO

In the chicken embryo, GH gene expression occurs in the neural retina and retinal GH promotes cell survival and induces axonal growth of retinal ganglion cells. Neuroretinal GH is therefore of functional importance before the appearance of somatotrophs and the onset of pituitary GH secretion to the peripheral plasma (at ED15-17). Endocrine actions of pituitary GH in the development and function of the chicken embryo eye are, however, unknown. This possibility has therefore been investigated in ED15 embryos and using the quail neuroretinal derived cell line (QNR/D). During this research, we studied for the first time, the coexistence of exogenous (endocrine) and local GH (autocrine/paracrine) in retinal ganglion cells (RGCs). In ovo systemic injections of Cy3-labeled GH demonstrated that GH in the embryo bloodstream was translocated into the neural retina and internalized into RGC's. Pituitary GH may therefore be functionally involved in retinal development during late embryogenesis. Cy3-labelled GH was similarly internalized into QNR/D cells after its addition into incubation media. The uptake of exogenous GH was by a receptor-mediated mechanism and maximal after 30-60min. The exogenous (endocrine) GH induced STAT5 phosphorylation and increased growth associated protein 43 (GAP43) and SNAP-25 immunoreactivity. Ex ovo intravitreal injections of Cy3-GH in ED12 embryos resulted in GH internalization and STAT5 activation. Interestingly, the CY3-labeled GH accumulated in perinuclear regions of the QNR/D cells, but was not found in the cytoplasm of neurite outgrowths, in which endogenous retinal GH is located. This suggests that exogenous (endocrine) and local (autocrine/paracrine) GH are both involved in retinal function in late embryogenesis but they co-exist in separate intracellular compartments within retinal ganglion cells.


Assuntos
Hormônio do Crescimento/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Galinhas , Células Ganglionares da Retina/citologia
17.
Gen Comp Endocrinol ; 230-231: 76-86, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27044512

RESUMO

Growth hormone (GH), together with thyroid hormones (TH), regulates growth and development, and has critical effects on vertebrate metabolism. In ectotherms, these physiological processes are strongly influenced by environmental temperature. In reptiles, however, little is known about the direct influences of this factor on the somatotropic and thyroid axes. Therefore, the aim of this study was to describe the effects of both acute (48h) and chronic (2weeks) exposure to sub-optimal temperatures (25 and 18°C) upon somatotropic and thyroid axis function of the green iguana, in comparison to the control temperature (30-35°C). We found a significant increase in GH release (2.0-fold at 25°C and 1.9-fold at 18°C) and GH mRNA expression (up to 3.7-fold), mainly under chronic exposure conditions. The serum concentration of insulin-like growth factor-I (IGF-I) was significantly greater after chronic exposure (18.5±2.3 at 25°C; 15.92±3.4 at 18°C; vs. 9.3±1.21ng/ml at 35°C), while hepatic IGF-I mRNA expression increased up to 6.8-fold. Somatotropic axis may be regulated, under acute conditions, by thyrotropin-releasing hormone (TRH) that significantly increased its hypothalamic concentration (1.45 times) and mRNA expression (0.9-fold above control), respectively; and somatostatin (mRNA expression increased 1.0-1.2 times above control); and under chronic treatment, by pituitary adenylate cyclase-activating peptide (PACAP mRNA expression was increased from 0.4 to 0.6 times). Also, it was shown that, under control conditions, injection of TRH stimulated a significant increase in circulating GH. On the other hand, while there was a significant rise in the hypothalamic content of TRH and its mRNA expression, this hormone did not appear to influence the thyroid axis activity, which showed a severe diminution in all conditions of cold exposure, as indicated by the decreases in thyrotropin (TSH) mRNA expression (up to one-eight of the control), serum T4 (from 11.6±1.09 to 5.3±0.58ng/ml, after 2weeks at 18°C) and T3 (from 0.87±0.09 to 0.05±0.01ng/ml, under chronic conditions at 25°C), and Type-2 deiodinase (D2) activity (from 992.5±224 to 213.6±26.4fmolI(125)T4/mgh). The reduction in thyroid activity correlates with the down-regulation of metabolism as suggested by the decrease in the serum glucose and free fatty acid levels. These changes apparently were independent of a possible stress response, at least under acute exposure to both temperatures and in chronic treatment to 25°C, since serum corticosterone had no significant changes in these conditions, while at chronic 18°C exposure, a slight increase (0.38 times above control) was found. Thus, these data suggest that the reptilian somatotropic and thyroid axes have differential responses to cold exposure, and that GH and TRH may play important roles associated to adaptation mechanisms that support temperature acclimation in the green iguana.


Assuntos
Hormônio do Crescimento/metabolismo , Iguanas/metabolismo , Temperatura , Glândula Tireoide/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Glicemia/análise , Corticosterona/sangue , Hormônio do Crescimento/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Iguanas/sangue , Iguanas/genética , Fator de Crescimento Insulin-Like I/genética , Iodeto Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/sangue , Somatostatina/genética , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/sangue , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Tireotropina/genética , Hormônio Liberador de Tireotropina/administração & dosagem , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/farmacologia
18.
Gen Comp Endocrinol ; 234: 68-80, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129619

RESUMO

Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.


Assuntos
Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Apoptose , Morte Celular , Galinhas , Neuroproteção , Células Ganglionares da Retina/citologia
19.
Gen Comp Endocrinol ; 234: 47-56, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27174747

RESUMO

It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.


Assuntos
Hormônios Gonadais/metabolismo , Células da Granulosa/metabolismo , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ovário/metabolismo , Animais , Comunicação Autócrina , Técnicas de Cultura de Células , Proliferação de Células , Galinhas , Feminino , Comunicação Parácrina
20.
Gen Comp Endocrinol ; 220: 103-11, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25448258

RESUMO

Growth hormone (GH) and prolactin (PRL) are both endocrines that are synthesized and released from the pituitary gland into systemic circulation. Both are therefore hormones and both have numerous physiological roles mediated through a myriad of target sites and both have pathophysiological consequences when present in excess or deficiency. GH or PRL gene expression is not, however, confined to the anterior pituitary gland and it occurs widely in many of their central and peripheral sites of action. This may reflect "leaky gene" phenomena and the fact that all cells have the potential to express every gene that is present in their genome. However, the presence of GH or PRL receptors in these extrapituitary sites of GH and PRL production suggests that they are autocrine or paracrine sites of GH and PRL action. These local actions often occur prior to the ontogeny of pituitary somatotrophs and lactotrophs and they may complement or differ from the roles of their pituitary counterparts. Many of these local actions are also of physiological significance, since they are impaired by a blockade of local GH or PRL production or by an antagonism of local GH or PRL action. These local actions may also be of pathophysiological significance, since autocrine or paracrine actions of GH and PRL are thought to be causally involved in a number of disease states, particularly in cancer. Autocrine GH for instance, is thought to be more oncogenic than pituitary GH and selective targeting of the autocrine moiety may provide a therapeutic approach to prevent tumor progression. In summary, GH and PRL are not just endocrine hormones, as they have autocrine and/or paracrine roles in health and disease.


Assuntos
Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Prolactina/genética , Prolactina/metabolismo , Comunicação Autócrina , Expressão Gênica , Humanos , Comunicação Parácrina , Hipófise/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA