RESUMO
Despite the considerable advances in the last years, the health information systems for health surveillance still need to overcome some critical issues so that epidemic detection can be performed in real time. For instance, despite the efforts of the Brazilian Ministry of Health (MoH) to make COVID-19 data available during the pandemic, delays due to data entry and data availability posed an additional threat to disease monitoring. Here, we propose a complementary approach by using electronic medical records (EMRs) data collected in real time to generate a system to enable insights from the local health surveillance system personnel. As a proof of concept, we assessed data from São Caetano do Sul City (SCS), São Paulo, Brazil. We used the "fever" term as a sentinel event. Regular expression techniques were applied to detect febrile diseases. Other specific terms such as "malaria," "dengue," "Zika," or any infectious disease were included in the dictionary and mapped to "fever." Additionally, after "tokenizing," we assessed the frequencies of most mentioned terms when fever was also mentioned in the patient complaint. The findings allowed us to detect the overlapping outbreaks of both COVID-19 Omicron BA.1 subvariant and Influenza A virus, which were confirmed by our team by analyzing data from private laboratories and another COVID-19 public monitoring system. Timely information generated from EMRs will be a very important tool to the decision-making process as well as research in epidemiology. Quality and security on the data produced is of paramount importance to allow the use by health surveillance systems.
RESUMO
At the end of 2019, the World Health Organization (WHO) reported pneumonia that started in Wuhan, China, as a global emergency problem. Researchers quickly advanced in research to try to understand this COVID-19 and sough solutions for the front-line professionals fighting this fatal disease. One of the tools to aid in the detection, diagnosis, treatment, and prevention of this disease is computed tomography (CT). CT images provide valuable information on how this new disease affects the lungs of patients. However, the analysis of these images is not trivial, especially when researchers are searching for quick solutions. Detecting and evaluating this disease can be tiring, time-consuming, and susceptible to errors. Thus, in this study, we aim to automatically segment infections caused by COVID19 and provide quantitative measures of these infections to specialists, thus serving as a support tool. We use a database of real clinical cases from Pedro Ernesto University Hospital of the State of Rio de Janeiro, Brazil. The method involves five steps: lung segmentation, segmentation and extraction of pulmonary vessels, infection segmentation, infection classification, and infection quantification. For the lung segmentation and infection segmentation tasks, we propose modifications to the traditional U-Net, including batch normalization, leaky ReLU, dropout, and residual block techniques, and name it as Residual U-Net. The proposed method yields an average Dice value of 77.1% and an average specificity of 99.76%. For quantification of infectious findings, the proposed method achieves results like that of specialists, and no measure presented a value of ρ < 0.05 in the paired t-test. The results demonstrate the potential of the proposed method as a tool to help medical professionals combat COVID-19. fight the COVID-19.
RESUMO
BACKGROUND: The progression and severity of COVID-19 vary significantly in the population. While the hallmarks of SARS-CoV-2 and severe COVID-19 within routine laboratory parameters are emerging, the impact of sex and age on these profiles is still unknown. METHODS: A multidimensional analysis was performed involving millions of records of laboratory parameters and diagnostic tests for 178 887 individuals from Brazil, of whom 33 266 tested positive for SARS-CoV-2. Analyzed data included those relating to complete blood cell count, electrolytes, metabolites, arterial blood gases, enzymes, hormones, cancer biomarkers, and others. FINDINGS: COVID-19 induced similar alterations in laboratory parameters in males and females. CRP and ferritin were increased, especially in older men with COVID-19, whereas abnormal liver function tests were common across several age groups, except for young women. Low peripheral blood basophils and eosinophils were more common in the elderly with COVID-19. Both male and female COVID-19 patients admitted to intensive care units displayed alterations in the coagulation system, and higher values for neutrophils, CRP, and lactate dehydrogenase. CONCLUSIONS: Our study uncovered the laboratory profiles of a large cohort of COVID-19 patients, which formed the basis of discrepancies influenced by aging and biological sex. These profiles directly linked COVID-19 disease presentation to an intricate interplay between sex, age, and immune activation.
Assuntos
COVID-19/sangue , Inflamação/etiologia , SARS-CoV-2 , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto JovemRESUMO
Two-phase flows are found in several industrial systems/applications, including boilers and condensers, which are used in power generation or refrigeration, steam generators, oil/gas extraction wells and refineries, flame stabilizers, safety valves, among many others. The structure of these flows is complex, and it is largely governed by the extent of interphase interactions. In the last two decades, due to a large development of microfabrication technologies, many microstructured devices involving several elements (constrictions, contractions, expansions, obstacles, or T-junctions) have been designed and manufactured. The pursuit for innovation in two-phase flows in these elements require an understanding and control of the behaviour of bubble/droplet flow. The need to systematize the most relevant studies that involve these issues constitutes the motivation for this review. In the present work, literature addressing gas-liquid and liquid-liquid flows, with Newtonian and non-Newtonian fluids, and covering theoretical, experimental, and numerical approaches, is reviewed. Particular focus is given to the deformation, coalescence, and breakup mechanisms when bubbles and droplets pass through the aforementioned microfluidic elements.
RESUMO
The Amazon basin includes 1000s of bodies of water, that are sorted according to their color in three types: blackwater, clearwater, and whitewater, which significantly differ in terms of their physicochemical parameters. More than 3,000 species of fish live in the rivers of the Amazon, among them, the sardine, Triportheus albus, which is one of the few species that inhabit all three types of water. The purpose of our study was to analyze if the gene expression of T. albus is determined by the different types of water, that is, if the species presents phenotypic plasticity to live in blackwater, clearwater, and whitewater. Gills of T. albus were collected at well-characterized sites for each type of water. Nine cDNA libraries were constructed, three biological replicates of each condition and the RNA was sequenced (RNA-Seq) on the MiSeq® Platform (Illumina®). A total of 51.6 million of paired-end reads, and 285,456 transcripts were assembled. Considering the FDR ≤ 0.05 and fold change ≥ 2, 13,754 differentially expressed genes were detected in the three water types. Two mechanisms related to homeostasis were detected in T. albus that live in blackwater, when compared to the ones in clearwater and whitewater. The acidic blackwater is a challenging environment for many types of aquatic organisms. The first mechanism is related to the decrease in cellular permeability, highlighting the genes coding for claudin proteins, actn4, itgb3b, DSP, Gap junction protein, and Ca2+-ATPase. The second with ionic and acid-base regulation [rhcg1, slc9a6a (NHE), ATP6V0A2, Na+/K+-ATPase, slc26a4 (pedrin) and slc4a4b]. We suggest T. albus is a good species of fish for future studies involving the ionic and acid-base regulation of Amazonian species. We also concluded that, T. albus, shows well defined phenotypic plasticity for each water type in the Amazon basin.
RESUMO
Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.
RESUMO
New adsorbents were prepared and tested for the separation of propane-propylene mixtures by adsorption. The ordered mesoporous material SBA-15 was used as the starting material for silver-ion deposition for pi-complexation with propylene. Two different loadings of silver were evaluated. Adsorption equilibrium and kinetic measurements of propane and propylene in the matrix (pure SBA-15) and the silver-modified adsorbents were performed at 323, 343, and 373 K. In this temperature range, the selectivity of propylene in one of the materials (Ag/SBA-15 = 0.5) is in the range 13-22 because the amount of propane adsorbed is very small, 0.095 mmol/g of propane versus 1.12 mmol/g of propylene at 100 kPa and 343 K. The diffusivity of both hydrocarbons is not seriously affected by the introduction of silver into the mesoporous structure.