Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
2.
Dis Aquat Organ ; 157: 31-43, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299848

RESUMO

Infections by Erysipelothrix rhusiopathiae occur in domestic animals and cause the disease known as 'erysipelas'. The ubiquity of Erysipelothrix spp. makes infection possible in a wide range of vertebrates and invertebrates. Cetaceans are highly susceptible to erysipelas, especially those under human care. The number of cases documented in wild cetaceans is low, the pathogenesis is incompletely understood, and the full spectrum of lesions is not well defined. The possible serotypes and species of the genus that can cause disease are unknown. In October 2022, a common bottlenose dolphin Tursiops truncatus stranded in Vilassar de Mar (Catalonia) showing skin lesions consistent with 'diamond skin disease', a characteristic lesion of erysipelas shared by swine and cetaceans. Necropsy was performed following standardized procedures, and multiple samples were taken for histopathology and bacteriology. Erysipelothrix sp. grew in pure culture in many tissue samples. Genetic characterization by multi-locus sequence analysis identified the species as E. rhusiopathiae. Histologically, the main lesions were an intense suppurative vasculitis of leptomeningeal arteries and veins with abundant intramural Gram-positive bacilli and meningeal hemorrhages. Meningeal lesions were considered the cause of death. The affected skin showed moderate suppurative dermatitis. Herein we document a case of erysipelas in a Mediterranean common bottlenose dolphin with unusual lesions in the leptomeningeal vessels and marked skin tropism. To our knowledge, this is the first case of severe brain involvement in erysipelas in a cetacean. We also provide a review of available cases in wild cetaceans, to highlight the characteristics of the disease and improve future diagnosis.


Assuntos
Golfinho Nariz-de-Garrafa , Erisipela , Infecções por Erysipelothrix , Erysipelothrix , Animais , Encéfalo , Erisipela/veterinária , Infecções por Erysipelothrix/microbiologia
3.
Vet Res ; 54(1): 112, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001497

RESUMO

The nasal microbiota plays an important role in animal health and the use of antibiotics is a major factor that influences its composition. Here, we studied the consequences of an intensive antibiotic treatment, applied to sows and/or their offspring, on the piglets' nasal microbiota. Four pregnant sows were treated with crystalline ceftiofur and tulathromycin (CTsows) while two other sows received only crystalline ceftiofur (Csows). Sow treatments were performed at D-4 (four days pre-farrowing), D3, D10 and D17 for ceftiofur and D-3, D4 and D11 for tulathromycin. Half of the piglets born to CTsows were treated at D1 with ceftiofur. Nasal swabs were taken from piglets at 22-24 days of age and bacterial load and nasal microbiota composition were defined by 16 s rRNA gene qPCR and amplicon sequencing. Antibiotic treatment of sows reduced their nasal bacterial load, as well as in their offspring, indicating a reduced bacterial transmission from the dams. In addition, nasal microbiota composition of the piglets exhibited signs of dysbiosis, showing unusual taxa. The addition of tulathromycin to the ceftiofur treatment seemed to enhance the deleterious effect on the microbiota diversity by diminishing some bacteria commonly found in the piglets' nasal cavity, such as Glaesserella, Streptococcus, Prevotella, Staphylococcus and several members of the Ruminococcaceae and Lachnospiraceae families. On the other hand, the additional treatment of piglets with ceftiofur resulted in no further effect beyond the treatment of the sows. Altogether, these results suggest that intensive antibiotic treatments of sows, especially the double antibiotic treatment, disrupt the nasal microbiota of their offspring and highlight the importance of sow-to-piglet microbiota transmission.


Assuntos
Microbiota , Humanos , Gravidez , Feminino , Animais , Suínos , Animais Recém-Nascidos , Bactérias , Antibacterianos/farmacologia , Lactação
4.
BMC Vet Res ; 19(1): 135, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641044

RESUMO

BACKGROUND: Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS: In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency;  blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%).   CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.


Assuntos
Haemophilus parasuis , Animais , Suínos , Tipagem de Sequências Multilocus/veterinária , Filogenia , Sorogrupo , Sorotipagem/veterinária , Haemophilus parasuis/genética , América do Norte
5.
Reg Environ Change ; 23(4): 156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970329

RESUMO

Farming in Europe has been the scene of several important socio-economic and environmental developments and crises throughout the last century. Therefore, an understanding of the historical driving forces of farm change helps identifying potentials for navigating future pathways of agricultural development. However, long-term driving forces have so far been studied, e.g. in anecdotal local case studies or in systematic literature reviews, which often lack context dependency. In this study, we bridged local and continental scales by conducting 123 oral history interviews (OHIs) with elderly farmers across 13 study sites in 10 European countries. We applied a driving forces framework to systematically analyse the OHIs. We find that the most prevalent driving forces were the introduction of new technologies, developments in agricultural markets that pushed farmers for farm size enlargement and technological optimisation, agricultural policies, but also cultural aspects such as cooperation and intergenerational arrangements. However, we find considerable heterogeneity in the specific influence of individual driving forces across the study sites, implying that generic assumptions about the dynamics and impacts of European agricultural change drivers hold limited explanatory power on the local scale. Our results suggest that site-specific factors and their historical development will need to be considered when addressing the future of agriculture in Europe in a scientific or policy context. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-023-02150-y.

6.
Vet Res ; 52(1): 145, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924012

RESUMO

Streptococcus suis is a zoonotic pathogen of swine involved in arthritis, polyserositis, and meningitis. Colonization of piglets by S. suis is very common and occurs early in life. The clinical outcome of infection is influenced by the virulence of the S. suis strains and the immunity of the animals. Here, the role of innate immunity was studied in cesarean-derived colostrum-deprived piglets inoculated intranasally with either virulent S. suis strain 10 (S10) or non-virulent S. suis strain T15. Colonization of the inoculated piglets was confirmed at the end of the study by PCR and immunohistochemistry. Fever (≥40.5 °C) was more prevalent in piglets inoculated with S10 compared to T15 at 4 h after inoculation. During the 3 days of monitoring, no other major clinical signs were detected. Accordingly, only small changes in transcription of genes associated with the antibacterial innate immune response were observed at systemic sites, with S10 inducing an earlier response than T15 in blood. Local inflammatory response to the inoculation, evaluated by transcriptional analysis of selected genes in nasal swabs, was more sustained in piglets inoculated with the virulent S10, as demonstrated by transcription of inflammation-related genes, such as IL1B, IL1A, and IRF7. In contrast, most of the gene expression changes in trachea, lungs, and associated lymph nodes were observed in response to the non-virulent T15 strain. Thus, S. suis colonization in the absence of systemic infection induces an innate immune response in piglets that appears to be related to the virulence potential of the colonizing strain.


Assuntos
Imunidade Inata , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Virulência , Animais , Imunidade Inata/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/virologia , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
7.
Vet Res ; 52(1): 68, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980312

RESUMO

Glaesserella parasuis strains were characterized by serotyping PCR, vtaA virulence marker Leader Sequence (LS)-PCR, clinical significance, and geographic region. Overall, the serovars 4, 5/12, 7, 1, and 13 were the most commonly detected. Serovars of greatest clinical relevance were systemic isolates that had a higher probability of being serovar 5/12, 13, or 7. In comparison, pulmonary isolates had a higher likelihood of being serovars 2, 4, 7, or 14. Serovars 5/12 and 13 have previously been considered disease-associated, but this study agrees with other recent studies showing that serovar 7 is indeed associated with systemic G. parasuis disease. Serovar 4 strains illustrated how isolates can have varying degrees of virulence and be obtained from pulmonary, systemic, or nasal sites. Serovars 8, 9, 15, and 10 were predominantly obtained from nasal samples, which indicates a limited clinical significance of these serovars. Additionally, most internal G. parasuis isolates were classified as virulent by LS-PCR and were disease-associated isolates, including serovars 1, 2, 4, 5/12, 7, 13, and 14. Isolates from the nasal cavity, including serovars 6, 9, 10, 11, and 15, were classified as non-virulent by LS-PCR. In conclusion, the distribution of G. parasuis serovars remains constant, with few serovars representing most of the strains isolated from affected pigs. Moreover, it was confirmed that the LS-PCR can be used for G. parasuis virulence prediction of field strains worldwide.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Doenças dos Suínos/epidemiologia , Animais , Ásia/epidemiologia , Europa (Continente)/epidemiologia , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , América do Norte/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Estudos Soroepidemiológicos , Sorotipagem/veterinária , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
8.
Vet Res ; 51(1): 7, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014043

RESUMO

Glaesserella (formerly Haemophilus) parasuis causes Glässer's disease, which results in high economic loss in the swine industry. To understand the polymicrobial interactions of G. parasuis and the nasal microbiota, the statistical association patterns of nasal colonizing bacteria with virulent and non-virulent strains of G. parasuis were studied accounting for the farm management practices as potential risk factors for the occurrence of Glässer's disease. The nasal microbiota from 51 weaned-piglets from four farms with Glässer's disease and three farms with no respiratory diseases was previously characterized and included in this study. The presence of virulent and/or non-virulent G. parasuis strains in the nasal cavities was determined in order to establish the potential association with other members of the nasal microbiota. Multivariate logistic and linear regression models were performed among the various members of nasal microbiota and G. parasuis. The multi-site production system and disease presence in the farm were both significantly associated with the presence of G. parasuis virulent strains in the nose of the piglets. Differential bacterial associations were observed with virulent or non-virulent G. parasuis. Chitinophagaceae, Corynebacteriaceae and Corynebacterium were positively associated with the virulent G. parasuis strains, while Enterobacteriaceae, Peptostreptococcaceae, Clostridium XI, and Escherichia/Shigella were negatively associated with virulent G. parasuis. On the other hand, Flavobacteriaceae, Planobacterium, and Phascolarctobacterium were positively associated with the non-virulent G. parasuis strains, while Rikenellaceae, Enterococcaceae, Odoribacter, and Corynebacterium were negatively associated with non-virulent G. parasuis. In conclusion, the nasal microbiota communities showed variations in the association with the G. parasuis strains type.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/patogenicidade , Microbiota , Nariz/microbiologia , Doenças dos Suínos/microbiologia , Animais , Infecções por Haemophilus/microbiologia , Suínos , Virulência , Desmame
9.
BMC Vet Res ; 16(1): 28, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000773

RESUMO

BACKGROUND: Previous studies have shown that the genus Moraxella is commonly present in the nasal microbiota of swine. RESULTS: In this study, 51 isolates of Moraxella were obtained from nasal swabs from 3 to 4 week old piglets, which represented 26 different fingerprintings by enterobacterial repetitive intergenic consensus (ERIC)-PCR. Whole 16S rRNA gene sequencing allowed the identification at species level of the Moraxella spp. isolates. The majority of the field strains were identified as Moraxella pluranimalium, but Moraxella porci was also detected. In addition, a cluster of 7 strains did not group with any described Moraxella species, probably representing a new species. Subsequent phenotypic characterization indicated that strains of Moraxella pluranimalium were mainly sensitive to serum complement, while the cluster representing the putative new species was highly resistant. Biofilm formation capacity was very variable among the Moraxella spp. isolates, while adherence to epithelial cell lines was similar among selected strains. Additionally, variability was also observed in the association of selected strains to porcine alveolar macrophages. Antimicrobial tests evidenced the existence of multidrug-resistance in the strains. CONCLUSIONS: In summary, phenotypic characterization revealed heterogeneity among Moraxella strains from the nasal cavity of piglets. Strains with pathogenic potential were detected as well as those that may be commensal members of the nasal microbiota. However, the role of Moraxella in porcine diseases and health should be further evaluated.


Assuntos
Moraxella/isolamento & purificação , Cavidade Nasal/microbiologia , Suínos/microbiologia , Células A549 , Animais , Anti-Infecciosos , Biofilmes , Linhagem Celular , Farmacorresistência Bacteriana Múltipla , Humanos , Macrófagos Alveolares/microbiologia , Moraxella/classificação , Moraxella/genética , RNA Ribossômico 16S/genética
10.
Vet Res ; 50(1): 69, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547880

RESUMO

Haemophilus parasuis is part of the microbiota of the upper respiratory tract in swine. However, virulent strains can cause a systemic disease known as Glässer's disease. Several virulence factors have been described in H. parasuis including the virulence-associated trimeric autotransporters (VtaAs). VtaA2 is up-regulated during infection and is only found in virulent strains. In order to determine its biological function, the vtaA2 gene was cloned with its native promotor region in pACYC184, and the transformed Escherichia coli was used to perform functional in vitro assays. VtaA2 was found to have a role in attachment to plastic, mucin, BSA, fibronectin and collagen. As other VtaAs from H. parasuis, the passenger domain of VtaA2 contains collagen domains. In order to examine the contribution of the collagen repeats to VtaA2 function, a recombinant vtaA2 without the central collagen domains was obtained and named vtaA2OL. VtaA2OL showed similar capacity than VtaA2 to adhere to plastic, mucin, BSA, fibronectin and plasma but a reduced capacity to adhere to collagen, suggesting that the collagen domains of VtaA2 are involved in collagen attachment. No function in cell adhesion and invasion to epithelial alveolar cell line A549 or unspecific binding to primary alveolar macrophages was found. Likewise VtaA2 had no role in serum or phagocytosis resistance. We propose that VtaA2 mediates adherence to the host by binding to the mucin, found in the upper respiratory tract mucus, and to the extracellular matrix proteins, present in the connective tissue of systemic sites, such as the serosa.


Assuntos
Aderência Bacteriana/genética , Infecções por Haemophilus/veterinária , Haemophilus parasuis/fisiologia , Doenças dos Suínos/microbiologia , Fatores de Virulência/genética , Animais , Escherichia coli/genética , Infecções por Haemophilus/microbiologia , Suínos , Virulência/genética
12.
J Clin Microbiol ; 55(9): 2617-2628, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615466

RESUMO

Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.


Assuntos
Infecções por Haemophilus/diagnóstico , Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Técnicas de Diagnóstico Molecular/métodos , Doenças dos Suínos/diagnóstico , Animais , Genoma/genética , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética
13.
BMC Genomics ; 17: 404, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230662

RESUMO

BACKGROUND: The microbiota, the ensemble of microorganisms on a particular body site, has been extensively studied during the last few years, and demonstrated to influence the development of many diseases. However, these studies focused mainly on the human digestive system, while the populations in the respiratory tract have been poorly assessed, especially in pigs. The nasal mucosa of piglets is colonized by an array of bacteria, many of which are unknown. Among the early colonizers, Haemophilus parasuis also has clinical importance, since it is also the etiological agent of Glässer's disease. This disease produces economical losses in all the countries with pig production, and the factors influencing its development are not totally understood. Hence, the purpose of this work was to characterize the nasal microbiota composition of piglets, and its possible role in Glässer's disease development. RESULTS: Seven farms from Spain (4 with Glässer's disease and 3 control farms without any respiratory disease) and three farms from UK (all control farms) were studied. Ten piglets from each farm were sampled at 3-4 weeks of age before weaning. The total DNA extracted from nasal swabs was used to amplify the 16S RNA gene for sequencing in Illumina MiSeq. Sequencing data was quality filtered and analyzed using QIIME software. The diversity of the nasal microbiota was low in comparison with other body sites, showing a maximum number of operational taxonomic units (OTUs) per pig of 1,603, clustered in five phyla. Significant differences were found at various taxonomical levels, when the microbiota was compared regarding the farm health status. Healthy status was associated to higher species richness and diversity, and UK farms demonstrated the highest diversity. CONCLUSIONS: The composition of the nasal microbiota of healthy piglets was uncovered and different phylotypes were shown to be significantly altered in animals depending on the clinical status of the farm of origin. Several OTUs at genus level were identified over-represented in piglets from control farms, indicating their potential as probiotics. Although we provide relevant data, fully metagenomic approaches could give light on the genes and metabolic pathways involved in the roles of the nasal microbiota to prevent respiratory diseases.


Assuntos
Microbiota , Mucosa Nasal/microbiologia , Doenças dos Suínos/etiologia , Desmame , Agricultura , Animais , Bactérias/classificação , Biodiversidade , Nível de Saúde , Espanha , Suínos , Reino Unido
14.
J Clin Microbiol ; 53(12): 3812-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424843

RESUMO

Haemophilus parasuis causes Glässer's disease and pneumonia in pigs. Indirect hemagglutination (IHA) is typically used to serotype this bacterium, distinguishing 15 serovars with some nontypeable isolates. The capsule loci of the 15 reference strains have been annotated, and significant genetic variation was identified between serovars, with the exception of serovars 5 and 12. A capsule locus and in silico serovar were identified for all but two nontypeable isolates in our collection of >200 isolates. Here, we describe the development of a multiplex PCR, based on variation within the capsule loci of the 15 serovars of H. parasuis, for rapid molecular serotyping. The multiplex PCR (mPCR) distinguished between all previously described serovars except 5 and 12, which were detected by the same pair of primers. The detection limit of the mPCR was 4.29 × 10(5) ng/µl bacterial genomic DNA, and high specificity was indicated by the absence of reactivity against closely related commensal Pasteurellaceae and other bacterial pathogens of pigs. A subset of 150 isolates from a previously sequenced H. parasuis collection was used to validate the mPCR with 100% accuracy compared to the in silico results. In addition, the two in silico-nontypeable isolates were typeable using the mPCR. A further 84 isolates were analyzed by mPCR and compared to the IHA serotyping results with 90% concordance (excluding those that were nontypeable by IHA). The mPCR was faster, more sensitive, and more specific than IHA, enabling the differentiation of 14 of the 15 serovars of H. parasuis.


Assuntos
Técnicas de Genotipagem/métodos , Haemophilus parasuis/classificação , Haemophilus parasuis/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Sorotipagem/métodos , Animais , Cápsulas Bacterianas/genética , Loci Gênicos , Infecções por Haemophilus/diagnóstico , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Haemophilus parasuis/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia , Fatores de Tempo
15.
Appl Environ Microbiol ; 81(9): 3255-67, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25747001

RESUMO

Haemophilus parasuis, the causative agent of Glässer's disease, is one of the early colonizers of the nasal mucosa of piglets. It is prevalent in swine herds, and lesions associated with disease are fibrinous polyserositis and bronchopneumonia. Antibiotics are commonly used in disease control, and resistance to several antibiotics has been described in H. parasuis. Prediction of H. parasuis virulence is currently limited by our scarce understanding of its pathogenicity. Some genes have been associated with H. parasuis virulence, such as lsgB and group 1 vtaA, while biofilm growth has been associated with nonvirulent strains. In this study, 86 H. parasuis nasal isolates from farms that had not had a case of disease for more than 10 years were obtained by sampling piglets at weaning. Isolates were studied by enterobacterial repetitive intergenic consensus PCR and determination of the presence of lsgB and group 1 vtaA, biofilm formation, inflammatory cell response, and resistance to antibiotics. As part of the diversity encountered, a novel 2,661-bp plasmid, named pJMA-1, bearing the blaROB-1 ß-lactamase was detected in eight colonizing strains. pJMA-1 was shown to share a backbone with other small plasmids described in the Pasteurellaceae, to be 100% stable, and to have a lower biological cost than the previously described plasmid pB1000. pJMA-1 was also found in nine H. parasuis nasal strains from a separate collection, but it was not detected in isolates from the lesions of animals with Glässer's disease or in nontypeable Haemophilus influenzae isolates. Altogether, we show that commensal H. parasuis isolates represent a reservoir of ß-lactam resistance genes which can be transferred to pathogens or other bacteria.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/enzimologia , Haemophilus parasuis/isolamento & purificação , Plasmídeos/isolamento & purificação , beta-Lactamases/metabolismo , Animais , Animais Recém-Nascidos , Antibacterianos/metabolismo , Portador Sadio/microbiologia , Portador Sadio/veterinária , DNA Bacteriano/química , DNA Bacteriano/genética , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Haemophilus parasuis/genética , Dados de Sequência Molecular , Pasteurellaceae/genética , Análise de Sequência de DNA , Suínos , Desmame , Resistência beta-Lactâmica , beta-Lactamases/genética , beta-Lactamas/metabolismo
16.
Vet Res ; 46: 102, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26395877

RESUMO

Haemophilus parasuis is a common inhabitant of the upper respiratory tract of pigs, and the causative agent of Glässer's disease. This disease is characterized by polyserositis and arthritis, produced by the severe inflammation caused by the systemic spread of the bacterium. After an initial colonization of the upper respiratory tract, H. parasuis enters the lung during the early stages of pig infection. In order to study gene expression at this location, we sequenced the ex vivo and in vivo H. parasuis Nagasaki transcriptome in the lung using a metatranscriptomic approach. Comparison of gene expression under these conditions with that found in conventional plate culture showed generally reduced expression of genes associated with anabolic and catabolic pathways, coupled with up-regulation of membrane-related genes involved in carbon acquisition, iron binding and pathogenesis. Some of the up-regulated membrane genes, including ABC transporters, virulence-associated autotransporters (vtaAs) and several hypothetical proteins, were only present in virulent H. parasuis strains, highlighting their significance as markers of disease potential. Finally, the analysis also revealed the presence of numerous antisense transcripts with possible roles in gene regulation. In summary, this data sheds some light on the scarcely studied in vivo transcriptome of H. parasuis, revealing nutritional virulence as an adaptive strategy for host survival, besides induction of classical virulence factors.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Pneumopatias/veterinária , Doenças dos Suínos/genética , Transcriptoma , Animais , Infecções por Haemophilus/genética , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/metabolismo , Pneumopatias/genética , Pneumopatias/microbiologia , Análise de Sequência de DNA/veterinária , Suínos , Doenças dos Suínos/microbiologia , Regulação para Cima , Virulência , Fatores de Virulência
17.
BMC Genomics ; 15: 1179, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539682

RESUMO

BACKGROUND: Haemophilus parasuis is the etiologic agent of Glässer's disease in pigs and causes devastating losses to the farming industry. Whilst some hyper-virulent isolates have been described, the relationship between genetics and disease outcome has been only partially established. In particular, there is weak correlation between serovar and disease phenotype. We sequenced the genomes of 212 isolates of H. parasuis and have used this to describe the pan-genome and to correlate this with clinical and carrier status, as well as with serotype. RESULTS: Recombination and population structure analyses identified five groups with very high rates of recombination, separated into two clades of H. parasuis with no signs of recombination between them. We used genome-wide association methods including discriminant analysis of principal components (DAPC) and generalised linear modelling (glm) to look for genetic determinants of this population partition, serovar and pathogenicity. We were able to identify genes from the accessory genome that were significantly associated with phenotypes such as potential serovar specific genes including capsule genes, and 48 putative virulence factors that were significantly different between the clinical and non-clinical isolates. We also show that the presence of many previously suggested virulence factors is not an appropriate marker of virulence. CONCLUSIONS: These genes will inform the generation of new molecular diagnostics and vaccines, and refinement of existing typing schemes and show the importance of the accessory genome of a diverse species when investigating the relationship between genotypes and phenotypes.


Assuntos
Estudo de Associação Genômica Ampla , Haemophilus parasuis/patogenicidade , Animais , Genoma Viral , Haemophilus parasuis/classificação , Haemophilus parasuis/genética , Recombinação Genética , Suínos/virologia , Virulência/genética
18.
Microbiology (Reading) ; 160(Pt 9): 1974-1984, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951673

RESUMO

Haemophilus parasuis is the causative agent of Glässer's disease, a systemic disorder characterized by polyarthritis, polyserositis and meningitis in pigs. Although it is well known that H. parasuis serovar 5 is the most prevalent serovar associated with the disease, the genetic differences among strains are only now being discovered. Genomes from two serovar 5 strains, SH0165 and 29755, are already available. Here, we present the draft genome of a third H. parasuis serovar 5 strain, the formal serovar 5 reference strain Nagasaki. An in silico genome subtractive analysis with full-length predicted genes of the three H. parasuis serovar 5 strains detected 95, 127 and 95 strain-specific genes (SSGs) for Nagasaki, SH0165 and 29755, respectively. We found that the genomic diversity within these three strains was high, in part because of a high number of mobile elements. Furthermore, a detailed analysis of large sequence polymorphisms (LSPs), encompassing regions ranging from 2 to 16 kb, revealed LSPs in virulence-related elements, such as a Toll-IL receptor, the AcrA multidrug efflux protein, an ATP-binding cassette (ABC) transporter, lipopolysaccharide-synthetizing enzymes and a tripartite ATP-independent periplasmic (TRAP) transporter. The whole-genome codon adaptation index (CAI) was also calculated and revealed values similar to other well-known bacterial pathogens. In addition, whole-genome SNP analysis indicated that nucleotide changes tended to be increased in membrane-related genes. This analysis provides further evidence that the genome of H. parasuis has been subjected to multiple lateral gene transfers (LGTs) and to fine-tuning of virulence factors, and has the potential for accelerated genome evolution.


Assuntos
Evolução Molecular , Genoma Bacteriano , Haemophilus parasuis/genética , Sorogrupo , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Variação Genética , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Haemophilus parasuis/classificação , Haemophilus parasuis/isolamento & purificação , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/microbiologia
19.
Vet Res ; 45: 104, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428823

RESUMO

Haemophilus parasuis is a commensal bacterium of the upper respiratory tract of healthy pigs. It is also the etiological agent of Glässer's disease, a systemic disease characterized by polyarthritis, fibrinous polyserositis and meningitis, which causes high morbidity and mortality in piglets. The aim of this study was to evaluate biofilm formation by well-characterized virulent and non-virulent strains of H. parasuis. We observed that non-virulent strains isolated from the nasal cavities of healthy pigs formed significantly (p < 0.05) more biofilms than virulent strains isolated from lesions of pigs with Glässer's disease. These differences were observed when biofilms were formed in microtiter plates under static conditions or formed in the presence of shear force in a drip-flow apparatus or a microfluidic system. Confocal laser scanning microscopy using different fluorescent probes on a representative subset of strains indicated that the biofilm matrix contains poly-N-acetylglucosamine, proteins and eDNA. The biofilm matrix was highly sensitive to degradation by proteinase K. Comparison of transcriptional profiles of biofilm and planktonic cells of the non-virulent H. parasuis F9 strain revealed a significant number of up-regulated membrane-related genes in biofilms, and genes previously identified in Actinobacillus pleuropneumoniae biofilms. Our data indicate that non-virulent strains of H. parasuis have the ability to form robust biofilms in contrast to virulent, systemic strains. Biofilm formation might therefore allow the non-virulent strains to colonize and persist in the upper respiratory tract of pigs. Conversely, the planktonic state of the virulent strains might allow them to disseminate within the host.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções por Haemophilus/veterinária , Haemophilus parasuis/fisiologia , Haemophilus parasuis/patogenicidade , Doenças dos Suínos/microbiologia , Traqueia/microbiologia , Animais , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/genética , Haemophilus parasuis/crescimento & desenvolvimento , Microscopia Confocal/veterinária , Dados de Sequência Molecular , Análise de Sequência de DNA/veterinária , Suínos , Virulência
20.
BMC Vet Res ; 10: 165, 2014 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-25038822

RESUMO

BACKGROUND: In this study, four lung lesion scoring methods (Slaughterhouse Pleurisy Evaluation System [SPES], Consolidation Lung Lesion Score [LLS], Image analyses [IA] and Ratio of lung weight/body weight [LW/BW]) were compared for the assessment of the different pathological outcomes derived from an Actinobacillus pleuropneumoniae (App) experimental infection model. Moreover, pathological data was coupled with clinical (fever, inappetence and clinical score), production (average daily weigh gain [ADWG]) and diagnostic (PCR, ELISA and bacterial isolation) parameters within the four infection outcomes (peracute, acute, subclinically infected and non-infected). RESULTS: From the 61 inoculated animals, 9 were classified as peracute (presence of severe App-like clinical signs and lesions and sudden death or euthanasia shortly after inoculation), 31 as acutely affected (presence of App-like clinical signs and lesions and survival until the end of the experiment), 12 as subclinically infected (very mild or no clinical signs but App infection confirmed) and 9 as non-infected animals (lack of App-like clinical signs and lack of evidence of App infection). A significant correlation between all lung lesion scoring systems was found with the exception of SPES score versus LW/BW. SPES showed a statistically significant association with all clinical, production and diagnostic (with the exception of PCR detection of App in the tonsil) variables assessed. LLS and IA showed similar statistically significant associations as SPES, with the exception of seroconversion against App at necropsy. In contrast, LW/BW was statistically associated only with App isolation in lungs, presence of App-like lesions and ELISA OD values at necropsy. CONCLUSIONS: In conclusion, SPES, LLS and IA are economic, fast and easy-to-perform lung scoring methods that, in combination with different clinical and diagnostic parameters, allow the characterization of different outcomes after App infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pulmão/patologia , Pleuropneumonia/veterinária , Matadouros , Infecções por Actinobacillus/patologia , Animais , Peso Corporal , Pulmão/microbiologia , Masculino , Tamanho do Órgão , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA