Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837784

RESUMO

Variations in light intensity induce cytosol pH changes in photosynthetic tissues, providing a possible signal to adjust a variety of biochemical, physiological and developmental processes to the energy status of the cells. It was shown that these pH changes are partially due to the transport of protons in or out of the thylakoid lumen. However, the ion transporters in the chloroplast that transmit these pH changes to the cytosol are not known. KEA1 and KEA2 are K+/H+ antiporters in the chloroplast inner envelope that adjust stromal pH in light-to-dark transitions. We previously determined that stromal pH is higher in kea1kea2 mutant cells. In this study, we now show that KEA1 and KEA2 are required to attenuate cytosol pH variations upon sudden light intensity changes in leaf mesophyll cells, showing they are important components of the light-modulated pH signalling module. The kea1kea2 mutant mesophyll cells also have a considerably less negative membrane potential. Membrane potential is dependent on the activity of the plasma membrane proton ATPase and is regulated by secondary ion transporters, mainly potassium channels in the plasma membrane. We did not find significant differences in the activity of the plasma membrane proton pump but found a strongly increased membrane permeability to protons, especially potassium, of the double mutant plasma membranes. Our results indicate that chloroplast envelope K+/H+ antiporters not only affect chloroplast pH but also have a strong impact on cellular ion homeostasis and energization of the plasma membrane.


Assuntos
Arabidopsis , Cloroplastos , Citosol , Antiportadores de Potássio-Hidrogênio , Concentração de Íons de Hidrogênio , Citosol/metabolismo , Cloroplastos/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Luz , Potenciais da Membrana , Potássio/metabolismo , Células do Mesofilo/metabolismo , Mutação/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação
2.
New Phytol ; 229(4): 2080-2090, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33111995

RESUMO

Photosynthesis and carbon fixation depend critically on the regulation of pH in chloroplast compartments in the daylight and at night. While it is established that an alkaline stroma is required for carbon fixation, it is not known how alkaline stromal pH is formed, maintained or regulated. We tested whether two envelope transporters, AtKEA1 and AtKEA2, directly affected stromal pH in isolated Arabidopsis chloroplasts using the fluorescent probe 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). External K+ -induced alkalinization of the stroma was observed in chloroplasts from wild-type (WT) plants but not from kea1kea2 mutants, suggesting that KEA1 and KEA2 mediate K+ uptake/H+ loss to modulate stromal pH. While light-stimulated alkalinization of the stroma was independent of KEA1 and KEA2, the rate of decay to neutral pH in the dark is delayed in kea1kea2 mutants. However, the dark-induced loss of a pH gradient across the thylakoid membrane was similar in WT and mutant chloroplasts. This indicates that proton influx from the cytosol mediated by envelope K+ /H+ antiporters contributes to adjustment of stromal pH upon light to dark transitions.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Concentração de Íons de Hidrogênio , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/genética
3.
Plant Physiol ; 172(1): 441-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443603

RESUMO

It is well established that thylakoid membranes of chloroplasts convert light energy into chemical energy, yet the development of chloroplast and thylakoid membranes is poorly understood. Loss of function of the two envelope K(+)/H(+) antiporters AtKEA1 and AtKEA2 was shown previously to have negative effects on the efficiency of photosynthesis and plant growth; however, the molecular basis remained unclear. Here, we tested whether the previously described phenotypes of double mutant kea1kea2 plants are due in part to defects during early chloroplast development in Arabidopsis (Arabidopsis thaliana). We show that impaired growth and pigmentation is particularly evident in young expanding leaves of kea1kea2 mutants. In proliferating leaf zones, chloroplasts contain much lower amounts of photosynthetic complexes and chlorophyll. Strikingly, AtKEA1 and AtKEA2 proteins accumulate to high amounts in small and dividing plastids, where they are specifically localized to the two caps of the organelle separated by the fission plane. The unusually long amino-terminal domain of 550 residues that precedes the antiport domain appears to tether the full-length AtKEA2 protein to the two caps. Finally, we show that the double mutant contains 30% fewer chloroplasts per cell. Together, these results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Osmose , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/ultraestrutura , Antiportadores de Potássio-Hidrogênio/classificação , Antiportadores de Potássio-Hidrogênio/genética , Tilacoides/química , Tilacoides/metabolismo
4.
Biochim Biophys Acta ; 1818(9): 2362-71, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22551943

RESUMO

KEA genes encode putative K(+) efflux antiporters that are predominantly found in algae and plants but are rare in metazoa; however, nothing is known about their functions in eukaryotic cells. Plant KEA proteins show homology to bacterial K(+) efflux (Kef) transporters, though two members in the Arabidopsis thaliana family, AtKEA1 and AtKEA2, have acquired an extra hydrophilic domain of over 500 residues at the amino terminus. We show that AtKEA2 is highly expressed in leaves, stems and flowers, but not in roots, and that an N-terminal peptide of the protein is targeted to chloroplasts in Arabidopsis cotyledons. The full-length AtKEA2 protein was inactive when expressed in yeast; however, a truncated AtKEA2 protein (AtsKEA2) lacking the N-terminal domain complemented disruption of the Na(+)(K(+))/H(+) antiporter Nhx1p to confer hygromycin resistance and tolerance to Na(+) or K(+) stress. To test transport activity, purified truncated AtKEA2 was reconstituted in proteoliposomes containing the fluorescent probe pyranine. Monovalent cations reduced an imposed pH gradient (acid inside) indicating AtsKEA2 mediated cation/H(+) exchange with preference for K(+)=Cs(+)>Li(+)>Na(+). When a conserved Asp(721) in transmembrane helix 6 that aligns to the cation binding Asp(164) of Escherichia coli NhaA was replaced with Ala, AtsKEA2 was completely inactivated. Mutation of a Glu(835) between transmembrane helix 8 and 9 in AtsKEA2 also resulted in loss of activity suggesting this region has a regulatory role. Thus, AtKEA2 represents the founding member of a novel group of eukaryote K(+)/H(+) antiporters that modulate monovalent cation and pH homeostasis in plant chloroplasts or plastids.


Assuntos
Antiporters/química , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Cloroplastos/química , Proteínas de Escherichia coli/química , Canais de Potássio/química , Simportadores/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sulfonatos de Arila/química , Transporte Biológico , Domínio Catalítico , Cátions , Cromatografia de Afinidade/métodos , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Níquel/química , Peptídeos/química , Plastídeos/metabolismo , Canais de Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Simportadores/metabolismo
5.
J Biol Chem ; 285(44): 33914-22, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20709757

RESUMO

We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na(+) and K(+)/H(+) antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K(+)/H(+) antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1Δvcx1Δ nhx1Δ triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca(2+)/H(+) antiporter activity catalyzed by Vcx1p, the K(+)/H(+) antiporter activity was strongly inhibited by Cd(2+) and to a lesser extend by Zn(2+). Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K(+) and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed.


Assuntos
Cátions/química , Mutação , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Antiporters/química , Cádmio/química , Cinamatos/química , Higromicina B/análogos & derivados , Higromicina B/química , Microscopia de Fluorescência/métodos , Plasmídeos/metabolismo , Mutação Puntual , Potássio/química , Proteínas de Saccharomyces cerevisiae/química , Trocadores de Sódio-Hidrogênio/química , Frações Subcelulares/química , Zinco/química
6.
Plant Physiol Biochem ; 160: 106-119, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485149

RESUMO

Potassium (K+) exerts key physiological functions such as osmoregulation, stomatal movement, membrane transport, protein synthesis and photosynthesis among others. Previously, it was demonstrated in Arabidopsis thaliana that the loss of function of the chloroplast K+Efflux Antiporters KEA1 and KEA2, located in the inner envelope membrane, provokes inefficient photosynthesis. Therefore, the main goal of this study was to evaluate the potential impact of the loss of function of those cation transport systems in the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Using 14-day-old seedlings from Arabidopsis double knock-out kea1kea2 mutants, ROS metabolism and NO content in roots and green cotyledons were studied at the biochemical level. The loss of function of AtKEA1 and AtKEA2 did not cause oxidative stress but it provoked an alteration of the ROS homeostasis affecting some ROS-generating enzymes. These included glycolate oxidase (GOX) and NADPH-dependent superoxide generation activity, enzymatic and non-enzymatic antioxidants and both NADP-isocitrate dehydrogenase and NADP-malic enzyme activities. NO content, analyzed by confocal laser scanning microscopy (CLSM), was negatively affected in both photosynthetic and non-photosynthetic organs in kea1kea2 mutant seedlings. Furthermore, the S-nitrosoglutathione reductase (GSNOR) protein expression and activity were downregulated in kea1kea2 mutants, whereas the tyrosine nitrated protein profile, analyzed by immunoblot, was unaffected but the relative expression of each immunoreactive band changed. Moreover, kea1kea2 mutants showed an increased photorespiratory pathway and stomata closure, thus promoting a higher resilience to drought stress. Data suggest that the chloroplast osmotic balance and integrity maintained by AtKEA1 and AtKEA2 are necessary to keep the balance of ROS/RNS metabolism. Moreover, these data open new questions about how endogenous NO generation might be affected by the K+/H+ transport located in the chloroplasts.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/genética , Secas , Óxido Nítrico/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Técnicas de Inativação de Genes
7.
J Plant Physiol ; 188: 44-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26414709

RESUMO

Heterotrimeric G proteins (G-proteins) are versatile signaling elements conserved in Eukaryotes. In animals G-proteins relay signals from 7-transmembrane spanning G protein-coupled receptors (GPCRs) to intracellular downstream effectors; however, the existence of GPCRs in plants is controversial. Contrastingly, a surplus of receptor-like kinases (RLKs) provides signal recognition at the plant cell surface. It is established that G proteins are involved in plant defense and suggested that they relay signals from defense-related RLKs. However, it is unclear how the signaling is conducted, as physical interaction between the RLKs and G proteins has not been demonstrated. Using yeast split-ubiquitin system and Bimolecular Fluorescence Complementation assays, we demonstrate physical interaction between the Gα, Gγ1 and Gγ2 subunits, and the defense-related RD-type receptor like kinases CERK1, BAK1 and BIR1. At the same time, no interaction was detected with the non-RD RLK FLS2. We hypothesize that G-proteins mediate signal transduction immediately downstream of the pathogenesis-related RLKs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA