Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 54(5): 2615-2625, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950831

RESUMO

Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Σ10OPAHs were 10.0 ± 9.2 ng/m3 in winter and 3.5 ± 1.6 ng/m3 in summer. The gradient to the regional background site exceeded 1 order of magnitude. Σ18NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental , Europa (Continente) , Humanos , Nitratos , Material Particulado
2.
Environ Sci Technol ; 53(21): 12506-12518, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31536707

RESUMO

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Pequim , China , Finlândia
3.
Environ Sci Technol ; 52(20): 11642-11651, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30234977

RESUMO

Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, ß-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and ß-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and ß-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.


Assuntos
Poluentes Atmosféricos , Água , Aerossóis , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio
4.
Faraday Discuss ; 200: 251-270, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574563

RESUMO

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.


Assuntos
Poluentes Atmosféricos/metabolismo , Atmosfera/química , Minerais/metabolismo , Saúde Pública , Espécies Reativas de Oxigênio/metabolismo , Aerossóis/química , Aerossóis/metabolismo , Poluentes Atmosféricos/química , Minerais/química , Material Particulado/química , Material Particulado/metabolismo , Água/química , Água/metabolismo
5.
Environ Sci Technol ; 51(23): 13545-13567, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111690

RESUMO

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.


Assuntos
Aerossóis , Poluentes Atmosféricos , Estudos Epidemiológicos , Poluição do Ar , Material Particulado
6.
J Phys Chem A ; 119(19): 4533-44, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25686209

RESUMO

Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.


Assuntos
Aerossóis/química , Biomassa , Radical Hidroxila/química , Abietanos/química , Adsorção , Proteínas de Arabidopsis/química , Atmosfera/análise , Simulação por Computador , Difusão , Glucose/análogos & derivados , Glucose/química , Umidade , Cinética , Modelos Químicos , Dinâmica não Linear , Proteínas Quinases/química , Temperatura
7.
Environ Int ; 148: 106343, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33454608

RESUMO

Air pollution is a major environmental health risk and it contributes to respiratory and cardiovascular diseases and excess mortality worldwide. The adverse health effects have been associated with the inhalation of fine particulate matter (PM2.5) and induction of respiratory oxidative stress. In this work, we quantified the oxidative potential (OP) of PM2.5 from several Canadian cities (Toronto, Hamilton, Montreal, Vancouver) using a recently developed bioanalytical method which measures the oxidation of lung antioxidants, glutathione, cysteine, and ascorbic acid, the formation of glutathione disulfide and cystine, and the related redox potential (RP) in a simulated epithelial lining fluid (SELF). We evaluated the application of empirical SELF RP as a new metric for aerosol OP. We further investigated how PM2.5 chemical composition and OP are related across various emission source sectors and whether these features are linked to specific properties of aerosol aqueous phase, such as pH and metal-ligand complexation. The OP indicators including SELF RP were strongly correlated among each other, indicating that the empirical RP could be used as a reliable metric in future studies. OP based on ascorbic acid showed dependency on the emission source sectors, most likely due to variation in the solubility of Fe. Traffic emissions resulted in the highest OP, followed by industrial emissions and resuspended crustal matter. OP presented low correlation with PM2.5 concentrations, low-moderate correlation with the aerosol organic matter, and moderate-strong association with black carbon and transition metals across the sites. We did not find strong association between the concentration of biomass burning tracers and OP. Copper was the only metal that showed high association with OP across all sites, whereas the correlation with other metals, such as iron, manganese, and titanium, showed clear dependency on the source sectors. The aerosol pH correlated negatively with ambient temperature and positively with biomass burning tracers and the levels of nitrate, ammonium, and aerosol liquid water content. The solubility of Fe was associated with sulfate and aerosol pH at most sites, suggesting the involvement of proton-mediated dissolution pathway, while this was not visible at the site influenced by industrial emission, most likely due to the abundance of pyrogenic Fe. The effect of metal-ligand complexation on the solubility of transition metals, in particular Fe, was clearly observed at all sites, whereas a combined effect with aerosol pH, and a subsequent impact on OP, was only seen at the traffic site in Toronto. The enhanced solubility of Fe due to proton- and ligand-mediated dissolution pathways and subsequent formation of reactive oxygen species may in part explain the health effects of PM2.5 seen in previous epidemiological studies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Canadá , Cidades , Monitoramento Ambiental , Pulmão/química , Oxirredução , Estresse Oxidativo , Material Particulado/análise , Solubilidade
8.
Appl Spectrosc ; 73(6): 638-652, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30987430

RESUMO

The application of electrospray (ES) for quantitative transfer of analytes from solution to an internal reflection element for analysis by attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy has been developed in this work. The ES ATR FT-IR method is evaluated with non-volatile and semi-volatile organic and inorganic compounds dissolved in pure organic solvents or organics in a mixture with water. The technique demonstrates the capability for rapid solvent evaporation from dilute solutions, facilitating the creation of thin films that allow ATR FT-IR to generate transmission-mode-like spectra. Electrospray ATR FT-IR with multiple reflections displays a linear response ( R2 = 0.95-0.99) in absorbance with the deposited mass and instrumental detection limit < 100 ng, which demonstrates potential for quantitative applications. The method is applicable when crystalline substances are present, even though the formation of particles restricts the upper limit of mass loadings relative to substances forming homogeneous films. In addition to the solvent, semi-volatile compounds can evaporate during the ES process; the magnitude of losses will depend on solution composition and temperature.

9.
Sci Rep ; 6: 32916, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605301

RESUMO

Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.


Assuntos
Poluentes Atmosféricos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sistema Respiratório/metabolismo , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/química , Antioxidantes/química , Células Epiteliais/metabolismo , Humanos , Modelos Biológicos , Ozônio/química , Material Particulado/efeitos adversos , Material Particulado/química , Material Particulado/metabolismo , Espécies Reativas de Oxigênio/química , Sistema Respiratório/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA