Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1000, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969664

RESUMO

Bacterial physiology and adaptation are influenced by the exopolysaccharides (EPS) they produce. These polymers are indispensable for the assembly of the biofilm extracellular matrix in multiple bacterial species. In a previous study, we described the profound gene expression changes leading to biofilm assembly in B. cereus ATCC14579 (CECT148). We found that a genomic region putatively dedicated to the synthesis of a capsular polysaccharide (eps2) was overexpressed in a biofilm cell population compared to in a planktonic population, while we detected no change in the transcript abundance from another genomic region (eps1) also likely to be involved in polysaccharide production. Preliminary biofilm assays suggested a mild role for the products of the eps2 region in biofilm formation and no function for the products of the eps1 region. The aim of this work was to better define the roles of these two regions in B. cereus multicellularity. We demonstrate that the eps2 region is indeed involved in bacterial adhesion to surfaces, cell-to-cell interaction, cellular aggregation and biofilm formation, while the eps1 region appears to be involved in a kind of social bacterial motility. Consistent with these results, we further demonstrate using bacterial-host cell interaction experiments that the eps2 region is more relevant to the adhesion to human epithelial cells and the zebrafish intestine, suggesting that this region encodes a bacterial factor that may potentiate gut colonization and enhance pathogenicity against humans.


Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/genética , Matriz Extracelular de Substâncias Poliméricas/genética , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Genômica , Polissacarídeos Bacterianos/metabolismo
2.
Science ; 345(6198): 822-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25035411

RESUMO

Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reprogramação Celular , Chaperonas de Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Acetilação , Proteínas de Ciclo Celular/genética , Desdiferenciação Celular , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Fator 9 de Diferenciação de Crescimento/metabolismo , Chaperonas de Histonas/genética , Histonas/metabolismo , Humanos , Metáfase , Chaperonas Moleculares , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Transdução de Sinais , Ativação Transcricional , Transcriptoma
3.
Curr Biol ; 20(2): 161-9, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20079641

RESUMO

Collective cell migration, the simultaneous movement of multiple cells that are connected by cell-cell adhesion, is ubiquitous in development, tissue repair, and tumor metastasis [1, 2]. It has been hypothesized that the directionality of cell movement during collective migration emerges as a collective property [3, 4]. Here we determine how movement directionality is established in collective mesendoderm migration during zebrafish gastrulation. By interfering with two key features of collective migration, (1) having neighboring cells and (2) adhering to them, we show that individual mesendoderm cells are capable of normal directed migration when moving as single cells but require cell-cell adhesion to participate in coordinated and directed migration when moving as part of a group. We conclude that movement directionality is not a de novo collective property of mesendoderm cells but rather a property of single mesendoderm cells that requires cell-cell adhesion during collective migration.


Assuntos
Movimento Celular , Células Germinativas/citologia , Animais , Sequência de Bases , Adesão Celular , Primers do DNA , Microscopia Confocal , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA