Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Mol Med ; 24(7): 3856-3900, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32090468

RESUMO

Elevated intraocular pressure (IOP) is a risk factor in glaucoma, a group of irreversible blinding diseases. Endogenous lipids may be involved in regulation of IOP homeostasis. We present comparative fold analysis of phospholipids and sphingolipids of aqueous humour and trabecular meshwork from human control vs primary open-angle glaucoma and mouse control (normotensive) vs ocular hypertensive state. The fold analysis in control vs disease state was based on ratiometric mass spectrometric data for above classes of lipids. We standardized in vitro assays for rapid characterization of lipids undergoing significant diminishment in disease state. Evaluation of lipids using in vitro assays helped select a finite number of lipids that may potentially expand cellular interstitial space embedded in an artificial matrix or increase fluid flow across a layer of cells. These assays reduced a number of lipids for initial evaluation using a mouse model, DBA/2J with spontaneous IOP elevation. These lipids were then used in other mouse models for confirmation of IOP lowering potential of a few lipids that were found promising in previous assessments. Our results provide selected lipid molecules that can be pursued for further evaluation and studies that may provide insight into their function.


Assuntos
Glaucoma/genética , Hipertensão Ocular/genética , Fosfolipídeos/genética , Esfingolipídeos/genética , Animais , Humor Aquoso/química , Modelos Animais de Doenças , Glaucoma/patologia , Humanos , Pressão Intraocular/genética , Lipídeos/química , Lipídeos/genética , Camundongos , Conformação Molecular , Hipertensão Ocular/patologia , Fosfolipídeos/química , Esfingolipídeos/química
2.
Curr Opin Pharmacol ; 74: 102424, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160646

RESUMO

Recent advancements in prostaglandin analogs (PGAs) have reinforced their role in managing intraocular pressure (IOP). Latanoprost excels in 24-h IOP control, while various PGAs offer similar effectiveness and side effects, generic PGAs perform as well as branded ones, and a notable IOP rise observed upon PGA discontinuation. Formulations with or without preservatives show comparable IOP reduction and adherence, often surpassing benzalkonium chloride (BAK)-preserved options. Emergent PGAs, such as latanoprostene bunod, fixed-dose netarsudil combined with latanoprost, and omidenepag Isopropyl, offer enhanced or non-inferior IOP reduction. The bimatoprost implant introduces a novel administration method with effective IOP reduction. These developments underscore ongoing progress in PGA-focused ophthalmological research. This article offers a comprehensive review of available prostanoid analogs and explores new developments.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Humanos , Latanoprosta/uso terapêutico , Glaucoma de Ângulo Aberto/induzido quimicamente , Glaucoma de Ângulo Aberto/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Soluções Oftálmicas/uso terapêutico , Glaucoma/tratamento farmacológico , Glaucoma/induzido quimicamente , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/induzido quimicamente , Pressão Intraocular , Prostaglandinas Sintéticas/uso terapêutico , Resultado do Tratamento
3.
Methods Mol Biol ; 2625: 65-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653632

RESUMO

This chapter focuses on identifying gangliosides in the optic nerve of the mouse using mass spectrometry techniques. The described protocol will also permit the characterization of the sample's lipidome. Two deuterium-labeled ganglioside standards and a general lipid class standard will be utilized for extraction efficiency and quantification. Using reversed-phase high-performance liquid chromatography (HPLC) coupled to a Q Exactive mass spectrometer, the samples will be analyzed. The method will consist of both an untargeted approach and a targeted approach with a ganglioside-specific inclusion list.


Assuntos
Cromatografia de Fase Reversa , Gangliosídeos , Camundongos , Animais , Gangliosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia de Fase Reversa/métodos , Nervo Óptico/química
4.
J Ocul Pharmacol Ther ; 39(8): 541-550, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267222

RESUMO

Background: Prostaglandin (PG) receptor agonists are the first-line eyedrop medication treatment for glaucoma. The pathophysiology of this disease is not completely known, and elevated intraocular pressure (IOP) is the key risk factor. The membranes of the axons (of the retinal ganglion cells) passing through the optic nerve (ON) head experience significant damage. Lipids are an essential component of the cell's membranes, and their profile changes owing to neurodegeneration. In this investigation, three agonists for distinct PG receptors were used to lower IOP and to determine their effect on the ON lipids. We utilized DBA/2J mice as a model of progressive IOP increase and C57BL/6J mice as a model of ON crush. Methods: DBA/2J and C57BL/6J mice were treated daily for 2 weeks with Latanoprost, PF-04217329, or Rivenprost. The IOP was measured every 2 days and pattern electroretinogram was conducted for DBA/2J throughout the study. Lipidomics of ONs were performed for each model and treatment group. Results: Of the tested compounds, Latanoprost and Rivenprost were the most effective agents decreasing IOP in DBA/2J mice. Triglyceride levels increased in the ONs of DBA/2J mouse model, but phosphatidylethanolamine levels underwent highest level changes in the C57BL/6J mouse model when treated with Latanoprost. Conclusions: Topical ocular FP- and EP4-receptor agonists appreciably lowered IOP in the DBA/2J mice representing pigmentary glaucoma. The observed changes in ON lipidomics in the different models of neurodegeneration suggest possible use of such measures in the development of more effective medicines for both IOP reduction and ON protection.


Assuntos
Glaucoma , Pressão Intraocular , Animais , Camundongos , Lipidômica , Camundongos Endogâmicos DBA , Latanoprosta/farmacologia , Latanoprosta/uso terapêutico , Camundongos Endogâmicos C57BL , Glaucoma/tratamento farmacológico , Nervo Óptico , Modelos Animais de Doenças
5.
Methods Mol Biol ; 2625: 347-351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653656

RESUMO

Treatment of lipids endogenous to the aqueous humor of the eye could serve as a potential therapy to slow the progression of glaucoma. Herein, we describe the method to treat trabecular meshwork samples in vitro with lipids and characterize changes in the samples' stiffness.


Assuntos
Glaucoma , Malha Trabecular , Humanos , Humor Aquoso , Lipídeos
6.
Data Brief ; 37: 107260, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377754

RESUMO

The right optic nerve of adult, 6 month to 1 year old, female and male Danio rerio were crushed and collected three days after. Matching controls of uninjured left optic nerves were also collected. The tissue was dissected from euthanized fish and frozen on dry ice. Samples were pooled for each category (female crush, female control, male crush, male control) n = 24 to obtain sufficient tissue for analysis. The brain from one male fish was also collected for control/calibration. Lipid extraction was done with the Bligh and Dyer [1] method, followed by untargeted liquid chromatography-mass spectrometry (LC MS-MS) lipid profiling using a Q-Exactive Orbitrap instrument coupled with Vanquish Horizon Binary UHPLC LC-MS system. The lipids were identified and quantified with LipidSearch 4.2.21 and the statistical analysis was conducted through Metaboanalyst 5.0. This data is available at Metabolomics Workbench, Study ID ST001725.

7.
Data Brief ; 34: 106699, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33457476

RESUMO

The optic nerve is part of the mammalian adult central nervous system (CNS) and has limited capability to regenerate after injury. Deletion of phosphatase and tensin homolog (PTEN), a negative regulator of the PI3 kinase/Akt pathway, has been shown to promote regeneration in retinal ganglion cells (RGCs) after optic nerve injury [1]. We present the lipidome of adult PTENloxP/loxP mice subjected to intravitreal injection of adeno-associated viruses expressing Cre (AAV-Cre) as a model of CNS neuroregeneration. At 4 weeks old, PTENloxP/loxP mice were intravitreally-injected with 2-3 µl of either AAV-Cre (KO) or AAV-PLAP (control), and two weeks later optic nerve crush was performed. At indicated time-points after crush (0 days, 7 days, 14 days), mice were euthanized and optic nerves were immediately dissected out, and then flash frozen on dry ice. A modified Bligh and Dyer [2] method was used for lipid extraction from the optic nerves, followed by liquid chromatography-mass spectrometry (LC MS-MS) lipid profiling using a Q-Exactive Orbitrap instrument coupled with Accela 600 HPLC. The raw scans were analysed with LipidSearch 4.2 and the statistical analysis was conducted through Metaboanalyst 4.0. This data is available at Metabolomics Workbench, study ID ST001477.

8.
Adv Protein Chem Struct Biol ; 127: 249-270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34340769

RESUMO

We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.


Assuntos
Modelos Neurológicos , Regeneração Nervosa , Proteínas do Tecido Nervoso/metabolismo , Nervo Óptico/fisiologia , Proteoma/metabolismo , Proteômica , Animais , Humanos
9.
Data Brief ; 31: 106001, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32685640

RESUMO

The optic nerve transfers visual information from the retina to the brain through the axons of retinal ganglion cells (RGCs). In adult mammals, optic nerve injuries and progressive degenerative diseases lead to the irreversible loss of RGCs, resulting in vision loss and blindness. Optogenetic models have proved useful in manipulating the growth of RGCs through expression and stimulation of channelrhodopsins (Chr2) in RGCs using the RGC-specific thy-1 promoter. Using transgenic Chr2 mouse (Thy1-ChR2-EYFP) as a model of regeneration, we profile the lipid changes which occur after traumatic optic nerve crush, light stimulation and forced RGC axonal growth. Thy1-ChR2-EYFP and control (C57BL/6) mice were divided in four groups each - 1) no crush and no stimulation, 2) no crush with stimulation, 3) crush and without stimulation, and 4) crush with stimulation. After euthanasia, the optic nerves were collected for lipidomic analysis. The Bligh and Dyer method was used for lipid extraction, followed by mass spectrometry lipid profiling with a Q-Exactive Orbitrap Liquid Chromatography-Mass Spectrometer (LC MS-MS). The raw scans were analysed with LipidSearch 4.1.3 and the statistical analysis was conducted through Metaboanalyst 4.0. This data is available at Metabolomics Workbench, study ID ST001381: [https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST001381&StudyType=MS&ResultType=5].

10.
iScience ; 23(2): 100836, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058951

RESUMO

Growth cones (GCs) are structures associated with growing neurons. GC membrane expansion, which necessitates protein-lipid interactions, is critical to axonal elongation in development and in adult neuritogenesis. We present a multi-omic analysis that integrates proteomics and lipidomics data for the identification of GC pathways, cell phenotypes, and lipid-protein interactions, with an analytic platform to facilitate the visualization of these data. We combine lipidomic data from GC and adult axonal regeneration following optic nerve crush. Our results reveal significant molecular variability in GCs across developmental ages that aligns with the upregulation and downregulation of lipid metabolic processes and correlates with distinct changes in the lipid composition of GC plasmalemma. We find that these processes also define the transition into a growth-permissive state in the adult central nervous system. The insight derived from these analyses will aid in promoting adult regeneration and functional innervation in devastating neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA