Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 299(1): 102739, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435197

RESUMO

Recent discovery of the ribosomal protein (RP) RPL11 interacting with and inhibiting the E3 ubiquitin ligase function of MDM2 established the RP-MDM2-p53 signaling pathway, which is linked to biological events, including ribosomal biogenesis, nutrient availability, and metabolic homeostasis. Mutations in RPs lead to a diverse array of phenotypes known as ribosomopathies in which the role of p53 is implicated. Here, we generated conditional RPL11-deletion mice to investigate in vivo effects of impaired RP expression and its functional connection with p53. While deletion of one Rpl11 allele in germ cells results in embryonic lethality, deletion of one Rpl11 allele in adult mice does not affect viability but leads to acute anemia. Mechanistically, we found RPL11 haploinsufficiency activates p53 in hematopoietic tissues and impedes erythroid precursor differentiation, resulting in insufficient red blood cell development. We demonstrated that reducing p53 dosage by deleting one p53 allele rescues RPL11 haploinsufficiency-induced inhibition of erythropoietic precursor differentiation and restores normal red blood cell levels in mice. Furthermore, blocking the RP-MDM2-p53 pathway by introducing an RP-binding mutation in MDM2 prevents RPL11 haploinsufficiency-caused p53 activation and rescues the anemia in mice. Together, these findings demonstrate that the RP-MDM2-p53 pathway is a critical checkpoint for RP homeostasis and that p53-dependent cell cycle arrest of erythroid precursors is the molecular basis for the anemia phenotype commonly associated with RP deficiency.


Assuntos
Anemia , Proteína Supressora de Tumor p53 , Animais , Camundongos , Anemia/genética , Haploinsuficiência , Mutação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343581

RESUMO

The human cytomegalovirus (HCMV) immediate early 1 (IE1) and IE2 proteins are critical regulators of virus replication. Both proteins are needed to efficiently establish lytic infection, and nascent expression of IE1 and IE2 is critical for reactivation from latency. The regulation of IE1 and IE2 protein expression is thus a central event in the outcome of HCMV infection. Transcription of the primary transcript encoding both IE1 and IE2 is well studied, but relatively little is known about the posttranscriptional mechanisms that control IE1 and IE2 protein synthesis. The mRNA 5' untranslated region (5' UTR) plays an important role in regulating mRNA translation. Therefore, to better understand the control of IE1 and IE2 mRNA translation, we examined the role of the shared 5' UTR of the IE1 and IE2 mRNAs (MIE 5' UTR) in regulating translation. In a cell-free system, the MIE 5' UTR repressed translation, as predicted based on its length and sequence composition. However, in transfected cells we found that the MIE 5' UTR increased the expression of a reporter gene and enhanced its association with polysomes, demonstrating that the MIE 5' UTR has a positive role in translation control. We also found that the MIE 5' UTR was necessary for efficient IE1 and IE2 translation during infection. Replacing the MIE 5' UTR with an unstructured sequence of the same length decreased IE1 and IE2 protein expression despite similar levels of IE1 and IE2 mRNA and reduced the association of the IE1 and IE2 mRNAs with polysomes. The wild-type MIE 5'-UTR sequence was also necessary for efficient HCMV replication. Together these data identify the shared 5' UTR of the IE1 and IE2 mRNAs as an important regulator of HCMV lytic replication.IMPORTANCE The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and during reactivation from viral latency. Thus, defining factors that regulate IE1 and IE2 expression is important for understanding the molecular events controlling the HCMV replicative cycle. Here we identify a positive role for the MIE 5' UTR in mediating the efficient translation of the IE1 and IE2 mRNAs. This result is an important advance for several reasons. To date, most studies of IE1 and IE2 regulation have focused on defining events that regulate IE1 and IE2 transcription. Our work reveals that in addition to the regulation of transcription, IE1 and IE2 are also regulated at the level of translation. Therefore, this study is important in that it identifies an additional layer of regulation controlling IE1 and IE2 expression and thus HCMV pathogenesis. These translational regulatory events could potentially be targeted by novel antiviral therapeutics that limit IE1 and IE2 mRNA translation and thus inhibit lytic replication or prevent HCMV reactivation.


Assuntos
Regiões 5' não Traduzidas , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Proteínas Imediatamente Precoces/biossíntese , RNA Viral/metabolismo , Replicação Viral/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , RNA Viral/genética
3.
Mol Cell Proteomics ; 16(4 suppl 1): S263-S276, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28237943

RESUMO

Human cytomegalovirus (HCMV) is a significant cause of disease in immune-compromised adults and immune naïve newborns. No vaccine exists to prevent HCMV infection, and current antiviral therapies have toxic side effects that limit the duration and intensity of their use. There is thus an urgent need for new strategies to treat HCMV infection. Repurposing existing drugs as antivirals is an attractive approach to limit the time and cost of new antiviral drug development. Virus-induced changes in infected cells are often driven by changes in cellular kinase activity, which led us to hypothesize that defining the complement of kinases (the kinome), whose abundance or expression is altered during infection would identify existing kinase inhibitors that could be repurposed as new antivirals. To this end, we applied a kinase capture technique, multiplexed kinase inhibitor bead-mass spectrometry (MIB-MS) kinome, to quantitatively measure perturbations in >240 cellular kinases simultaneously in cells infected with a laboratory-adapted (AD169) or clinical (TB40E) HCMV strain. MIB-MS profiling identified time-dependent increases and decreases in MIB binding of multiple kinases including cell cycle kinases, receptor tyrosine kinases, and mitotic kinases. Based on the kinome data, we tested the antiviral effects of kinase inhibitors and other compounds, several of which are in clinical use or development. Using a novel flow cytometry-based assay and a fluorescent reporter virus we identified three compounds that inhibited HCMV replication with IC50 values of <1 µm, and at doses that were not toxic to uninfected cells. The most potent inhibitor of HCMV replication was OTSSP167 (IC50 <1.2 nm), a MELK inhibitor, blocked HCMV early gene expression and viral DNA accumulation, resulting in a >3 log decrease in virus replication. These results show the utility of MIB-MS kinome profiling for identifying existing kinase inhibitors that can potentially be repurposed as novel antiviral drugs.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Células Cultivadas , Citomegalovirus/metabolismo , Reposicionamento de Medicamentos , Humanos , Espectrometria de Massas/métodos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
J Virol ; 90(19): 8855-65, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466417

RESUMO

UNLABELLED: Expression of the human cytomegalovirus (HCMV) IE1 and IE2 proteins is critical for the establishment of lytic infection and reactivation from viral latency. Defining the mechanisms controlling IE1 and IE2 expression is therefore important for understanding how HCMV regulates its replicative cycle. Here we identify several novel transcripts encoding full-length IE1 and IE2 proteins during HCMV lytic replication. Two of the alternative major immediate early (MIE) transcripts initiate in the first intron, intron A, of the previously defined MIE transcript, while others extend the 5' untranslated region. Each of the MIE transcripts associates with polyribosomes in infected cells and therefore contributes to IE1 and IE2 protein levels. Surprisingly, deletion of the core promoter region of the major immediate early promoter (MIEP) from a plasmid containing the MIE genomic locus did not completely abrogate IE1 and IE2 expression. Instead, deletion of the MIEP core promoter resulted in increased expression of alternative MIE transcripts, suggesting that the MIEP suppresses the activity of the alternative MIE promoters. While the canonical MIE mRNA was the most abundant transcript at immediate early times, the novel MIE transcripts accumulated to levels equivalent to that of the known MIE transcript later in infection. Using two HCMV recombinants, we found that sequences in intron A of the previously defined MIE transcript are required for efficient IE1 and IE2 expression and viral replication. Together, our results identify new regulatory sequences controlling IE1 and IE2 expression and suggest that multiple transcription units act in concert to regulate IE1 and IE2 expression during lytic infection. IMPORTANCE: The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and reactivation from viral latency. This study expands our understanding of the sequences controlling IE1 and IE2 expression by defining novel transcriptional units controlling the expression of full-length IE1 and IE2 proteins. Our results suggest that alternative promoters may allow for IE1 and IE2 expression when MIEP activity is limiting, as occurs in latently infected cells.


Assuntos
Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Proteínas Imediatamente Precoces/biossíntese , Transativadores/biossíntese , Transcrição Gênica , Ativação Viral , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Transativadores/genética
5.
J Virol ; 90(6): 3138-47, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739047

RESUMO

UNLABELLED: Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. To facilitate viral spread, we have previously shown HCMV to extend the short 48-h life span of monocytes. Mechanistically, HCMV upregulated two specific cellular antiapoptotic proteins, myeloid leukemia sequence 1 (Mcl-1) and heat shock protein 27 (HSP27), to block the two proteolytic cleavages necessary for the formation of fully active caspase 3 and the subsequent initiation of apoptosis. We now show that HCMV more robustly upregulated Mcl-1 than normal myeloid growth factors and that Mcl-1 was the only myeloid survival factor to rapidly induce HSP27 prior to the 48-h cell fate checkpoint. We determined that HCMV glycoproteins gB and gH signal through the cellular epidermal growth factor receptor (EGFR) and αvß3 integrin, respectively, during viral entry in order to drive the increase of Mcl-1 and HSP27 in an Akt-dependent manner. Although Akt is known to regulate protein stability and transcription, we found that gB- and gH-initiated signaling preferentially and cooperatively stimulated the synthesis of Mcl-1 and HSP27 through mTOR-mediated translation. Overall, these data suggest that the unique signaling network generated during the viral entry process stimulates the upregulation of select antiapoptotic proteins allowing for the differentiation of short-lived monocytes into long-lived macrophages, a key step in the viral dissemination strategy. IMPORTANCE: Human cytomegalovirus (HCMV) infection is endemic within the human population. Although primary infection is generally asymptomatic in immunocompetent individuals, HCMV is a significant cause of morbidity and mortality in the immunocompromised. The multiorgan inflammatory diseases associated with symptomatic HCMV infection are a direct consequence of the monocyte-mediated systemic spread of the virus. In order for peripheral blood monocytes to facilitate viral dissemination, HCMV subverts the short 48-h life span of monocytes by inducing the expression of cellular antiapoptotic proteins Mcl-1 and HSP27. Here, we demonstrate that the rapid and simultaneous upregulation of Mcl-1 and HSP27 is a distinctive feature of HCMV-induced monocyte survival. Moreover, we decipher the signaling pathways activated during viral entry needed for the robust synthesis of Mcl-1 and HSP27. Identifying the virus-specific mechanisms used to upregulate select cellular factors required for the survival of HCMV-infected monocytes is important to the development of new classes of anti-HCMV drugs.


Assuntos
Citomegalovirus/fisiologia , Proteínas de Choque Térmico HSP27/biossíntese , Interações Hospedeiro-Patógeno , Monócitos/virologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Ativação Transcricional , Internalização do Vírus , Sobrevivência Celular , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Transdução de Sinais , Fatores de Tempo
6.
PLoS One ; 12(12): e0190268, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29284022

RESUMO

Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) or loss of Arabidopsis thaliana PARG1 (poly(ADP-ribose) glycohydrolase) disrupt a subset of plant defenses. In the present study we examined the impact of altered poly(ADP-ribosyl)ation on early gene expression induced by the microbe-associate molecular patterns (MAMPs) flagellin (flg22) and EF-Tu (elf18). Stringent statistical analyses and filtering identified 178 genes having MAMP-induced mRNA abundance patterns that were altered by either PARP inhibitor 3-aminobenzamide (3AB) or PARG1 knockout. From the identified set of 178 genes, over fifty Arabidopsis T-DNA insertion lines were chosen and screened for altered basal defense responses. Subtle alterations in callose deposition and/or seedling growth in response to those MAMPs were observed in knockouts of At3g55630 (FPGS3, a cytosolic folylpolyglutamate synthetase), At5g15660 (containing an F-box domain), At1g47370 (a TIR-X (Toll-Interleukin Receptor domain)), and At5g64060 (a predicted pectin methylesterase inhibitor). Over-represented GO terms for the gene expression study included "innate immune response" for elf18/parg1, highlighting a subset of elf18-activated defense-associated genes whose expression is altered in parg1 plants. The study also allowed a tightly controlled comparison of early mRNA abundance responses to flg22 and elf18 in wild-type Arabidopsis, which revealed many differences. The PARP inhibitor 3-methoxybenzamide (3MB) was also used in the gene expression profiling, but pleiotropic impacts of this inhibitor were observed. This transcriptomics study revealed targets for further dissection of MAMP-induced plant immune responses, impacts of PARP inhibitors, and the molecular mechanisms by which poly(ADP-ribosyl)ation regulates plant responses to MAMPs.


Assuntos
Arabidopsis/fisiologia , Poli ADP Ribosilação , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Hibridização de Ácido Nucleico
7.
Cell Host Microbe ; 17(2): 217-28, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25662750

RESUMO

The liver-specific microRNA, miR-122, stabilizes hepatitis C virus (HCV) RNA genomes by recruiting host argonaute 2 (AGO2) to the 5' end and preventing decay mediated by exonuclease Xrn1. However, HCV replication requires miR-122 in Xrn1-depleted cells, indicating additional functions. We show that miR-122 enhances HCV RNA levels by altering the fraction of HCV genomes available for RNA synthesis. Exogenous miR-122 increases viral RNA and protein levels in Xrn1-depleted cells, with enhanced RNA synthesis occurring before heightened protein synthesis. Inhibiting protein translation with puromycin blocks miR-122-mediated increases in RNA synthesis, but independently enhances RNA synthesis by releasing ribosomes from viral genomes. Additionally, miR-122 reduces the fraction of viral genomes engaged in protein translation. Depleting AGO2 or PCBP2, which binds HCV RNA in competition with miR-122 and promotes translation, eliminates miR-122 stimulation of RNA synthesis. Thus, by displacing PCBP2, miR-122 reduces HCV genomes engaged in translation while increasing the fraction available for RNA synthesis.


Assuntos
Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Biossíntese de Proteínas , RNA Viral/metabolismo , Transcrição Gênica , Replicação Viral , Linhagem Celular , Regulação Viral da Expressão Gênica , Humanos , Proteínas de Ligação a RNA/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA