Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(46): 24065-24075, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679491

RESUMO

Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P)+-dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD+ bound to the ALDH site were determined in two space groups at 1.7-1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded ß-flap. The Rossmann domain resembles the classic ALDH superfamily NAD+-binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD+ does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs.


Assuntos
Aldeído Desidrogenase/química , Proteínas de Bactérias/química , Dobramento de Proteína , Sinorhizobium meliloti/enzimologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cinética , NAD , Domínios Proteicos , Estrutura Secundária de Proteína , Sinorhizobium meliloti/genética , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 111(9): 3389-94, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550478

RESUMO

Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where L-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Å of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction.


Assuntos
Proteínas de Bactérias/química , Benzoquinonas/metabolismo , Geobacter/enzimologia , Proteínas de Membrana/química , Redes e Vias Metabólicas/genética , Modelos Moleculares , Conformação Proteica , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cinética , Proteínas de Membrana/metabolismo , Enzimas Multifuncionais/química , Enzimas Multifuncionais/metabolismo , Prolina/metabolismo , Espalhamento a Baixo Ângulo , Eletricidade Estática , Especificidade por Substrato , Difração de Raios X
3.
Molecules ; 23(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295473

RESUMO

Proline utilization A (PutA) is a bifunctional flavoenzyme that catalyzes the two-step oxidation of l-proline to l-glutamate using spatially separated proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites. Substrate inhibition of the coupled PRODH-GSALDH reaction by proline is a common kinetic feature of PutAs, yet the structural basis for this phenomenon remains unknown. To understand the mechanism of substrate inhibition, we determined the 2.15 Šresolution crystal structure of Bradyrhizobium japonicum PutA complexed with proline. Proline was discovered in five locations remote from the PRODH active site. Most notably, strong electron density indicated that proline bound tightly to the GSAL binding site of the GSALDH active site. The pose and interactions of proline bound in this site are remarkably similar to those of the natural aldehyde substrate, GSAL, implying that proline inhibits the GSALDH reaction of PutA. Kinetic measurements show that proline is a competitive inhibitor of the PutA GSALDH reaction. Together, the structural and kinetic data show that substrate inhibition of the PutA coupled reaction is due to proline binding in the GSAL site.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Bradyrhizobium/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Prolina Oxidase/química , Prolina/química , Aldeído Oxirredutases/química , Aldeídos/química , Proteínas de Bactérias/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Proteínas de Membrana/química , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
4.
J Biol Chem ; 290(4): 2225-34, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25492892

RESUMO

Proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as separate monofunctional enzymes. Substrate channeling has previously been shown for bifunctional PutAs, but whether the monofunctional enzymes utilize an analogous channeling mechanism has not been examined. Here, we report the first evidence of substrate channeling in a PRODH-P5CDH two-enzyme pair. Kinetic data for the coupled reaction of PRODH and P5CDH from Thermus thermophilus are consistent with a substrate channeling mechanism, as the approach to steady-state formation of NADH does not fit a non-channeling two-enzyme model. Furthermore, inactive P5CDH and PRODH mutants inhibit NADH production and increase trapping of the P5C intermediate in coupled assays of wild-type PRODH-P5CDH enzyme pairs, indicating that the mutants disrupt PRODH-P5CDH channeling interactions. A dissociation constant of 3 µm was estimated for a putative PRODH-P5CDH complex by surface plasmon resonance (SPR). Interestingly, P5CDH binding to PRODH was only observed when PRODH was immobilized with the top face of its (ßα)8 barrel exposed. Using the known x-ray crystal structures of PRODH and P5CDH from T. thermophilus, a model was built for a proposed PRODH-P5CDH enzyme channeling complex. The structural model predicts that the core channeling pathway of bifunctional PutA enzymes is conserved in monofunctional PRODH-P5CDH enzyme pairs.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , NAD/química , Prolina Oxidase/metabolismo , Prolina/química , Mapeamento de Interação de Proteínas , Thermus thermophilus/enzimologia , Catálise , Flavoproteínas/metabolismo , Modelos Moleculares , Mutação , Oxigênio/química , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
5.
Biochemistry ; 53(35): 5661-73, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25137435

RESUMO

Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH-P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target-decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a ß-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Rhodobacter capsulatus/metabolismo , Aldeído Desidrogenase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Domínio Catalítico , Genes Bacterianos , Cinética , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter capsulatus/genética , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Especificidade por Substrato , Difração de Raios X
6.
Biochemistry ; 53(31): 5150-61, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25046425

RESUMO

Proline utilization A from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate Δ(1)-pyrroline-5-carboxylate/glutamate-γ-semialdehyde (P5C/GSA). In this work, the structure of the channel was explored by inserting large side chain residues at four positions along the channel in BjPutA. Kinetic analysis of the different mutants revealed replacement of D779 with Tyr (D779Y) or Trp (D779W) significantly decreased the overall rate of the PRODH-P5CDH channeling reaction. X-ray crystal structures of D779Y and D779W revealed that the large side chains caused a constriction in the central section of the tunnel, thus likely impeding the travel of P5C/GSA in the channel. The D779Y and D779W mutants have PRODH activity similar to that of wild-type BjPutA but exhibit significantly lower P5CDH activity, suggesting that exogenous P5C/GSA enters the channel upstream of Asp779. Replacement of nearby Asp778 with Tyr (D778Y) did not impact BjPutA channeling activity. Consistent with the kinetic results, the X-ray crystal structure of D778Y shows that the main channel pathway is not impacted; however, an off-cavity pathway is closed off from the channel. These findings provide evidence that the off-cavity pathway is not essential for substrate channeling in BjPutA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Prolina/metabolismo , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Bradyrhizobium/química , Domínio Catalítico/genética , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/metabolismo , Prolina Oxidase/química , Estrutura Quaternária de Proteína , Pirrolina Carboxilato Redutases/química , Eletricidade Estática , delta-1-Pirrolina-5-Carboxilato Redutase
7.
Biochemistry ; 51(50): 10099-108, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23151026

RESUMO

Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of proline to Δ(1)-pyrroline-5-carboxylate, which is the first step of proline catabolism. Here, we report the structures of proline dehydrogenase from Deinococcus radiodurans in the oxidized state complexed with the proline analogue L-tetrahydrofuroic acid and in the reduced state with the proline site vacant. The analogue binds against the si face of the FAD isoalloxazine and is protected from bulk solvent by helix α8 and the ß1-α1 loop. The FAD ribityl chain adopts two conformations in the E-S complex, which is unprecedented for flavoenzymes. One of the conformations is novel for the PRODH superfamily and may contribute to the low substrate affinity of Deinococcus PRODH. Reduction of the crystalline enzyme-inhibitor complex causes profound structural changes, including 20° butterfly bending of the isoalloxazine, crankshaft rotation of the ribityl, shifting of α8 by 1.7 Å, reconfiguration of the ß1-α1 loop, and rupture of the Arg291-Glu64 ion pair. These changes dramatically open the active site to facilitate product release and allow electron acceptors access to the reduced flavin. The structures suggest that the ion pair, which is conserved in the PRODH superfamily, functions as the active site gate. Mutagenesis of Glu64 to Ala decreases the catalytic efficiency 27-fold, which demonstrates the importance of the gate. Mutation of Gly63 decreases the efficiency 140-fold, which suggests that flexibility of the ß1-α1 loop is essential for optimal catalysis. The large conformational changes that are required to form the E-S complex suggest that conformational selection plays a role in substrate recognition.


Assuntos
Prolina Oxidase/química , Prolina Oxidase/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Deinococcus/enzimologia , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Furanos/metabolismo , Cinética , Modelos Moleculares , Conformação Molecular , Oxirredução , Prolina Oxidase/antagonistas & inibidores
8.
Biosci Rep ; 36(6)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742866

RESUMO

Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs.


Assuntos
Proteínas de Bactérias/genética , Quimera/genética , Proteínas de Membrana/genética , Prolina/genética , Domínios Proteicos/genética , Proteínas de Bactérias/metabolismo , Quimera/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Prolina Oxidase/genética , Ligação Proteica/genética , Pirróis/metabolismo , Rhodobacter capsulatus/genética
9.
Front Biosci (Landmark Ed) ; 17(1): 375-88, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201749

RESUMO

Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism.


Assuntos
Prolina/metabolismo , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Modelos Moleculares , Prolina Oxidase/química , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA