Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(22): 6997-7002, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038554

RESUMO

Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Movimento Celular/fisiologia , Cones de Crescimento/metabolismo , Hipocampo/citologia , Complexos Multiproteicos/metabolismo , Animais , Fenômenos Biomecânicos , Primers do DNA/genética , Embrião de Mamíferos/citologia , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Imuno-Histoquímica , Simulação de Dinâmica Molecular , Reação em Cadeia da Polimerase , Ratos , Fatores de Tempo
2.
J Lab Autom ; 21(2): 268-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26385905

RESUMO

Adoption of spheroids within high-content screening (HCS) has lagged behind high-throughput screening (HTS) due to issues with running complex assays on large three-dimensional (3D) structures.To enable multiplexed imaging and analysis of spheroids, different cancer cell lines were grown in 3D on micropatterned 96-well plates with automated production of nine uniform spheroids per well. Spheroids achieve diameters of up to 600 µm, and reproducibility was experimentally validated (interwell and interplate CV(diameter) <5%). Biphoton imaging confirmed that micropatterned spheroids exhibit characteristic cell heterogeneity with distinct microregions. Furthermore, central necrosis appears at a consistent spheroid size, suggesting standardized growth.Using three reference compounds (fluorouracil, irinotecan, and staurosporine), we validated HT-29 micropatterned spheroids on an HCS platform, benchmarking against hanging-drop spheroids. Spheroid formation and imaging in a single plate accelerate assay workflow, and fixed positioning prevents structures from overlapping or sticking to the well wall, augmenting image processing reliability. Furthermore, multiple spheroids per well increase the statistical confidence sufficiently to discriminate compound mechanisms of action and generate EC50 values for endpoints of cell death, architectural change, and size within a single-pass read. Higher quality data and a more efficient HCS work chain should encourage integration of micropatterned spheroid models within fundamental research and drug discovery applications.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Imagem Óptica/métodos , Esferoides Celulares , Bioensaio/métodos , Sobrevivência Celular , Descoberta de Drogas/métodos , Células HT29 , Humanos , Reprodutibilidade dos Testes
3.
Nat Commun ; 4: 2252, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23934334

RESUMO

Studying the roles of different proteins and the mechanisms involved in synaptogenesis is hindered by the complexity and heterogeneity of synapse types, and by the spatial and temporal unpredictability of spontaneous synapse formation. Here we demonstrate a robust and high-content method to induce selectively presynaptic or postsynaptic structures at controlled locations. Neurons are cultured on micropatterned substrates comprising arrays of micron-scale dots coated with various synaptogenic adhesion molecules. When plated on neurexin-1ß-coated micropatterns, neurons expressing neuroligin-1 exhibit specific dendritic organization and selective recruitment of the postsynaptic scaffolding molecule PSD-95. Furthermore, functional AMPA receptors are trapped at neurexin-1ß dots, as revealed by live-imaging experiments. In contrast, neurons plated on SynCAM1-coated substrates exhibit strongly patterned axons and selectively assemble functional presynapses. N-cadherin coating, however, is not able to elicit synapses, indicating the specificity of our system. This method opens the way to both fundamental and therapeutic studies of various synaptic systems.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/metabolismo , Animais , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/biossíntese , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Ratos , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA