Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Handb Clin Neurol ; 205: 297-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39341660

RESUMO

The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.


Assuntos
Neoplasias Encefálicas , Terapia Genética , Humanos , Terapia Genética/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Glioblastoma/terapia , Glioblastoma/genética , Neurologia/métodos , Neurologia/tendências
2.
Expert Opin Biol Ther ; 23(2): 145-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36510843

RESUMO

INTRODUCTION: High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved. AREAS COVERED: Gene therapy was developed as a promising approach to treat HGG. Here, we review completed and ongoing clinical trials employing viral and non-viral vectors for adult and pediatric HGG, as well as the key supporting preclinical data. EXPERT OPINION: These therapies have proven safe, and pre- and post-treatment tissue analyses demonstrated tumor cell lysis, increased immune cell infiltration, and increased systemic immune function. Although viral therapy in clinical trials has not yet significantly extended the survival of HGG, promising strategies are being tested. Oncolytic HSV vectors have shown promising results for both adult and pediatric HGG. A recently published study demonstrated that HG47Δ improved survival in recurrent HGG. Likewise, PVSRIPO has shown survival improvement compared to historical controls. It is likely that further analysis of these trials will stimulate the development of new administration protocols, and new therapeutic combinations that will improve HGG prognosis.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Criança , Humanos , Adjuvantes Imunológicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Terapia Genética , Glioma/genética , Glioma/terapia , Padrão de Cuidado , Guias como Assunto
3.
STAR Protoc ; 4(2): 102174, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36930648

RESUMO

Development of spatial-integrative pre-clinical models is needed for glioblastoma, which are heterogenous tumors with poor prognosis. Here, we present an optimized protocol to generate three-dimensional ex vivo explant slice glioma model from orthotopic tumors, genetically engineered mouse models, and fresh patient-derived specimens. We describe a step-by-step workflow for tissue acquisition, dissection, and sectioning of 300-µm tumor slices maintaining cell viability. The explant slice model allows the integration of confocal time-lapse imaging with spatial analysis for studying migration, invasion, and tumor microenvironment, making it a valuable platform for testing effective treatment modalities. For complete details on the use and execution of this protocol, please refer to Comba et al. (2022).1.

4.
Acta Biomater ; 163: 378-391, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36179980

RESUMO

The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.


Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Movimento Celular , Materiais Biocompatíveis/farmacologia , Células Epiteliais , Matriz Extracelular , Microambiente Tumoral
5.
Front Oncol ; 12: 1005069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276147

RESUMO

Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.

6.
Nat Commun ; 13(1): 3606, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750880

RESUMO

Intra-tumoral heterogeneity is a hallmark of glioblastoma that challenges treatment efficacy. However, the mechanisms that set up tumor heterogeneity and tumor cell migration remain poorly understood. Herein, we present a comprehensive spatiotemporal study that aligns distinctive intra-tumoral histopathological structures, oncostreams, with dynamic properties and a specific, actionable, spatial transcriptomic signature. Oncostreams are dynamic multicellular fascicles of spindle-like and aligned cells with mesenchymal properties, detected using ex vivo explants and in vivo intravital imaging. Their density correlates with tumor aggressiveness in genetically engineered mouse glioma models, and high grade human gliomas. Oncostreams facilitate the intra-tumoral distribution of tumoral and non-tumoral cells, and potentially the collective invasion of the normal brain. These fascicles are defined by a specific molecular signature that regulates their organization and function. Oncostreams structure and function depend on overexpression of COL1A1. Col1a1 is a central gene in the dynamic organization of glioma mesenchymal transformation, and a powerful regulator of glioma malignant behavior. Inhibition of Col1a1 eliminates oncostreams, reprograms the malignant histopathological phenotype, reduces expression of the mesenchymal associated genes, induces changes in the tumor microenvironment and prolongs animal survival. Oncostreams represent a pathological marker of potential value for diagnosis, prognosis, and treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/patologia , Camundongos , Análise Espaço-Temporal , Microambiente Tumoral/genética
7.
Neuro Oncol ; 22(6): 806-818, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-31950181

RESUMO

BACKGROUND: High-grade gliomas are aggressive and immunosuppressive brain tumors. Molecular mechanisms that regulate the inhibitory immune tumor microenvironment (TME) and glioma progression remain poorly understood. Fyn tyrosine kinase is a downstream target of the oncogenic receptor tyrosine kinase pathway and is overexpressed in human gliomas. Fyn's role in vivo in glioma growth remains unknown. We investigated whether Fyn regulates glioma initiation, growth and invasion. METHODS: We evaluated the role of Fyn using genetically engineered mouse glioma models (GEMMs). We also generated Fyn knockdown stem cells to induce gliomas in immune-competent and immune-deficient mice (nonobese diabetic severe combined immunodeficient gamma mice [NSG], CD8-/-, CD4-/-). We analyzed molecular mechanism by RNA sequencing and bioinformatics analysis. Flow cytometry was used to characterize immune cellular infiltrates in the Fyn knockdown glioma TME. RESULTS: We demonstrate that Fyn knockdown in diverse immune-competent GEMMs of glioma reduced tumor progression and significantly increased survival. Gene ontology (GO) analysis of differentially expressed genes in wild-type versus Fyn knockdown gliomas showed enrichment of GOs related to immune reactivity. However, in NSG and CD8-/- and CD4-/- immune-deficient mice, Fyn knockdown gliomas failed to show differences in survival. These data suggest that the expression of Fyn in glioma cells reduces antiglioma immune activation. Examination of glioma immune infiltrates by flow cytometry displayed reduction in the amount and activity of immune suppressive myeloid derived cells in the Fyn glioma TME. CONCLUSIONS: Gliomas employ Fyn mediated mechanisms to enhance immune suppression and promote tumor progression. We propose that Fyn inhibition within glioma cells could improve the efficacy of antiglioma immunotherapies.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/genética , Glioma/genética , Imunidade , Camundongos , Proteínas Proto-Oncogênicas c-fyn/genética , Receptores Proteína Tirosina Quinases , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA