Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nanomedicine ; 36: 102419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147665

RESUMO

In this study we produced a set of in vitro culture platforms to model vascular cell responses to growth factors and factor delivery vehicles. Two of the systems (whole vessel and whole lung vascular development) were supported by microfluidic systems facilitating media circulation and waste removal. We assessed vascular endothelial growth factor (VEGF) delivery by Pluronic F-127 hydrogel, 30 nm pore-sized microparticles (MPs), 60 nm pore-sized MP or a 50/50 mixture of 30 and 60 nm pore-sized MP. VEGF was delivered to porcine acellular lung vascular scaffolds (2.5 cm2 square pieces or whole 3D segments of acellular blood vessels) as well as whole acellular lung scaffolds. Scaffold-cell attachment was examined as was vascular tissue formation. We showed that a 50/50 mixture of 30 and 60 nm pore-sized silicon wafer MPs allowed for long-term release of VEGF within the scaffold vasculature and supported vascular endothelial tissue development during in vitro culture.


Assuntos
Portadores de Fármacos , Células Endoteliais/metabolismo , Hidrogéis , Pulmão , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Animais , Técnicas de Cultura de Células , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Pulmão/irrigação sanguínea , Pulmão/química , Porosidade , Suínos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacologia
2.
Dev Biol ; 449(1): 21-34, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771304

RESUMO

A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126. In addition to vascular defects observed only in the embryo, loss of miR-126 function in the placenta leads to junctional zone hyperplasia at E15.5 at the expense of the labyrinth, reduced placental volume for nutrient exchange and intra-uterine growth restriction of the embryos. Junctional zone hyperplasia results from increased numbers of proliferating glycogen trophoblast (GlyT) progenitors at E13.5 that give rise to an expanded glycogen trophoblast population at E15.5. Transcriptomic profile of miR-126-/- placentas revealed dysregulation of a large number of GlyT (Prl6a1, Prl7c1, Pcdh12) and trophoblast-specific genes (Tpbpa, Tpbpb, Prld1) and genes with known roles in placental development. We show that miR-126-/- placentas, but not miR-126-/- embryos, display aberrant expression of imprinted genes with important roles in glycogen trophoblasts and junctional zone development, including Igf2, H19, Cdkn1c and Phlda2, during mid-gestation. We also show that miR126-/- placentas display global hypermethylation, including at several imprint control centers. Our findings uncover a novel role for miR-126 in regulating extra-embryonic energy stores, expression of imprinted genes and DNA methylation in the placenta.


Assuntos
Metilação de DNA/genética , Glicogênio/metabolismo , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Humanos , Hiperplasia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Gravidez , Transcriptoma/genética
3.
iScience ; 25(5): 104223, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35434541

RESUMO

The effect of SARS-CoV-2 infection on placental function is not well understood. Analysis of placentas from women who tested positive at delivery showed SARS-CoV-2 genomic and subgenomic RNA in 22 out of 52 placentas. Placentas from two mothers with symptomatic COVID-19 whose pregnancies resulted in adverse outcomes for the fetuses contained high levels of viral Alpha variant RNA. The RNA was localized to the trophoblasts that cover the fetal chorionic villi in direct contact with maternal blood. The intervillous spaces and villi were infiltrated with maternal macrophages and T cells. Transcriptome analysis showed an increased expression of chemokines and pathways associated with viral infection and inflammation. Infection of placental cultures with live SARS-CoV-2 and spike protein-pseudotyped lentivirus showed infection of syncytiotrophoblast and, in rare cases, endothelial cells mediated by ACE2 and Neuropilin-1. Viruses with Alpha, Beta, and Delta variant spikes infected the placental cultures at significantly greater levels.

4.
Nat Commun ; 13(1): 7951, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572684

RESUMO

Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Animais , Masculino , Diabetes Mellitus Tipo 1/terapia , Terapia de Imunossupressão , Tolerância Imunológica , Imunossupressores/farmacologia , Sobrevivência de Enxerto
5.
bioRxiv ; 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34100019

RESUMO

SARS-CoV-2 infection during pregnancy leads to an increased risk of adverse pregnancy outcomes. Although the placenta itself can be a target of virus infection, most neonates are virus free and are born healthy or recover quickly. Here, we investigated the impact of SARS-CoV-2 infection on the placenta from a cohort of women who were infected late during pregnancy and had tested nasal swab positive for SARS-CoV-2 by qRT-PCR at delivery. SARS-CoV-2 genomic and subgenomic RNA was detected in 23 out of 54 placentas. Two placentas with high virus content were obtained from mothers who presented with severe COVID-19 and whose pregnancies resulted in adverse outcomes for the fetuses, including intrauterine fetal demise and a preterm delivered baby still in newborn intensive care. Examination of the placental samples with high virus content showed efficient SARS-CoV-2 infection, using RNA in situ hybridization to detect genomic and replicating viral RNA, and immunohistochemistry to detect SARS-CoV-2 nucleocapsid protein. Infection was restricted to syncytiotrophoblast cells that envelope the fetal chorionic villi and are in direct contact with maternal blood. The infected placentas displayed massive infiltration of maternal immune cells including macrophages into intervillous spaces, potentially contributing to inflammation of the tissue. Ex vivo infection of placental cultures with SARS-CoV-2 or with SARS-CoV-2 spike (S) protein pseudotyped lentivirus targeted mostly syncytiotrophoblast and in rare events endothelial cells. Infection was reduced by using blocking antibodies against ACE2 and against Neuropilin 1, suggesting that SARS-CoV-2 may utilize alternative receptors for entry into placental cells.

6.
Transl Res ; 207: 19-29, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620888

RESUMO

Proper placental development is crucial to establish a successful pregnancy. Defective placentation is the major cause of several pregnancy complications, including preeclampsia (PE). We have previously demonstrated that the secreted factor Epidermal Growth Factor-like Domain 7 (EGFL7) is expressed in trophoblast cells of the human placenta and that it regulates trophoblast migration and invasion, suggesting a role in placental development. In the present study, we demonstrate that circulating levels of EGFL7 are undetectable in nonpregnant women, increase during pregnancy and decline toward term. Close to term, circulating levels of EGFL7 are significantly higher in patients affected by PE when compared to normal pregnancies. Consistent with these results, villus explant cultures obtained from placentas affected by PE display increased release of EGFL7 in the culture medium when compared to those from normal placentas. Our results suggest that increased release of placenta-derived EGFL7 and increased circulating levels of EGFL7 are associated with the clinical manifestation of PE.


Assuntos
Fatores de Crescimento Endotelial/sangue , Pré-Eclâmpsia/sangue , Adulto , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF , Endoglina/sangue , Análise Fatorial , Feminino , Humanos , Modelos Logísticos , Análise Multivariada , Fator de Crescimento Placentário/sangue , Gravidez , Análise de Componente Principal , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
7.
Sci Transl Med ; 10(452)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068570

RESUMO

The inability to produce perfusable microvasculature networks capable of supporting tissue survival and of withstanding physiological pressures without leakage is a fundamental problem facing the field of tissue engineering. Microvasculature is critically important for production of bioengineered lung (BEL), which requires systemic circulation to support tissue survival and coordination of circulatory and respiratory systems to ensure proper gas exchange. To advance our understanding of vascularization after bioengineered organ transplantation, we produced and transplanted BEL without creation of a pulmonary artery anastomosis in a porcine model. A single pneumonectomy, performed 1 month before BEL implantation, provided the source of autologous cells used to bioengineer the organ on an acellular lung scaffold. During 30 days of bioreactor culture, we facilitated systemic vessel development using growth factor-loaded microparticles. We evaluated recipient survival, autograft (BEL) vascular and parenchymal tissue development, graft rejection, and microbiome reestablishment in autografted animals 10 hours, 2 weeks, 1 month, and 2 months after transplant. BEL became well vascularized as early as 2 weeks after transplant, and formation of alveolar tissue was observed in all animals (n = 4). There was no indication of transplant rejection. BEL continued to develop after transplant and did not require addition of exogenous growth factors to drive cell proliferation or lung and vascular tissue development. The sterile BEL was seeded and colonized by the bacterial community of the native lung.


Assuntos
Engenharia Biomédica , Transplante de Pulmão , Animais , Regulação da Expressão Gênica , Imunidade , Pulmão/crescimento & desenvolvimento , Pulmão/imunologia , Pulmão/ultraestrutura , Linfangiogênese/genética , Microbiota , Modelos Animais , Suínos , Alicerces Teciduais/química , Transcriptoma/genética
8.
J Tissue Eng Regen Med ; 11(7): 2136-2152, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26756722

RESUMO

We report, for the first time, the development of an organ culture system and protocols to support recellularization of whole acellular (AC) human paediatric lung scaffolds. The protocol for paediatric lung recellularization was developed using human transformed or immortalized cell lines and single human AC lung scaffolds. Using these surrogate cell populations, we identified cell number requirements, cell type and order of cell installations, flow rates and bioreactor management methods necessary for bioengineering whole lungs. Following the development of appropriate cell installation protocols, paediatric AC scaffolds were recellularized using primary lung alveolar epithelial cells (AECs), vascular cells and tracheal/bronchial cells isolated from discarded human adult lungs. Bioengineered paediatric lungs were shown to contain well-developed vascular, respiratory epithelial and lung tissue, with evidence of alveolar-capillary junction formation. Types I and II AECs were found thoughout the paediatric lungs. Furthermore, surfactant protein-C and -D and collagen I were produced in the bioengineered lungs, which resulted in normal lung compliance measurements. Although this is a first step in the process of developing tissues for transplantation, this study demonstrates the feasibility of producing bioengineered lungs for clinical use. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Células Epiteliais Alveolares/metabolismo , Bioprótese , Reatores Biológicos , Pulmão/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células Epiteliais Alveolares/citologia , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
9.
Exp Biol Med (Maywood) ; 239(9): 1135-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24962174

RESUMO

Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.


Assuntos
Pulmão , Modelos Biológicos , Técnicas de Cultura de Tecidos , Engenharia Tecidual , Animais , Humanos , Pulmão/citologia , Pulmão/metabolismo , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
10.
J Interferon Cytokine Res ; 34(5): 354-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24350899

RESUMO

The rs2004640 single nucleotide polymorphism and the CGGGG copy-number variant (rs77571059) are promoter polymorphisms within interferon regulatory factor 5 (IRF5). They have been implicated as susceptibility factors for several autoimmune diseases. IRF5 uses alternative promoter splicing, where any of 4 first exons begin the mRNA. The CGGGG indel is in exon 1A's promoter; the rs2004640 allele creates a splicing recognition site, enabling usage of exon 1B. This study aimed at characterizing alterations in IRF5 mRNA due to these polymorphisms. Cells with risk polymorphisms exhibited ~2-fold higher levels of IRF5 mRNA and protein, but demonstrated no change in mRNA stability. Quantitative PCR demonstrated decreased usage of exons 1C and 1D in cell lines with the risk polymorphisms. RNA folding analysis revealed a hairpin in exon 1B; mutational analysis showed that the hairpin shape decreased translation 5-fold. Although translation of mRNA that uses exon 1B is low due to a hairpin, increased IRF5 mRNA levels in individuals with the rs2004640 risk allele lead to higher overall protein expression. In addition, several new splice variants of IRF5 were sequenced. IRF5's promoter polymorphisms alter first exon usage and increase transcription levels. High levels of IRF5 may bias the immune system toward autoimmunity.


Assuntos
Doenças Autoimunes/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Fatores Reguladores de Interferon/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Doenças Autoimunes/imunologia , Linhagem Celular , Feminino , Genótipo , Células HEK293 , Voluntários Saudáveis , Humanos , Fatores Reguladores de Interferon/imunologia , Masculino , Polimorfismo de Nucleotídeo Único/imunologia , Regiões Promotoras Genéticas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Fatores de Risco
11.
Front Immunol ; 4: 360, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223576

RESUMO

INTRODUCTION: Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis affect millions of people worldwide. Interferon regulatory factor 5 (IRF5) contains polymorphisms associated with these autoimmune diseases. Two of these functional polymorphisms are found upstream of the IRF5 gene. rs2004640, which is a single nucleotide polymorphism and the CGGGG insertion/deletion (indel) were studied. IRF5 uses four different promoters for its four first exons: 1A, 1B, 1C, and 1D. Each promoter was analyzed, including functional differences due to the autoimmune-risk polymorphisms. RESULTS: IRF5 promoters were analyzed using ChIP-Seq data (ENCODE database) and the FactorBook database to define transcription factor binding sites. To verify promoter activity, the promoters were cloned into luciferase plasmids. Each construct exhibited luciferase activity. Exons 1A and 1D contain putative PU.1 and NFkB binding sites. Imiquimod, a Toll-like receptor 7 (TLR7) ligand, was used to activate these transcription factors. IRF5 levels were doubled after imiquimod treatment (p < 0.001), with specific increases in the 1A promoter (2.2-fold, p = 0.03) and 1D promoter (2.8-fold, p = 0.03). A putative binding site for p53, which affects apoptosis, was found in the promoter for exon 1B. However, site-directed mutagenesis of the p53 site showed no effect in a reporter assay. CONCLUSION: The IRF5 exon 1B promoter has been characterized, and the responses of each IRF5 promoter to TLR7 stimulation have been determined. Changes in promoter activity and gene expression are likely due to specific and distinct transcription factors that bind to each promoter. Since high expression of IRF5 contributes to the development of autoimmune disease, understanding the source of increased IRF5 levels is key to understanding autoimmune etiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA