Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443148

RESUMO

Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas F-Box/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/fisiologia , Regulação para Baixo , Proteínas F-Box/fisiologia , Lisossomos/metabolismo , Proteínas de Membrana/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166262, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481059

RESUMO

Autophagy refers to a ubiquitous set of catabolic pathways required to achieve proper cellular homeostasis. Aberrant autophagy has been implicated in a multitude of diseases including cancer. In this review, we highlight pioneering and groundbreaking research that centers on delineating the role of autophagy in cancer initiation, proliferation and metastasis. First, we discuss the autophagy-related (ATG) proteins and their respective roles in the de novo formation of autophagosomes and the subsequent delivery of cargo to the lysosome for recycling. Next, we touch upon the history of cancer research that centers upon ATG proteins and regulatory mechanisms that control an appropriate autophagic response and how these are altered in the diseased state. Then, we discuss the various discoveries that led to the idea of autophagy as a double-edged sword when it comes to cancer therapy. This review also briefly narrates how different types of autophagy-selective macroautophagy and chaperone-mediated autophagy, have been linked to different cancers. Overall, these studies build upon a steadfast trajectory that aims to solve the monumentally daunting challenge of finding a cure for many types of cancer by modulating autophagy either through inhibition or induction.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Autofagia Mediada por Chaperonas/genética , Neoplasias/genética , Autofagossomos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Lisossomos/genética , Neoplasias/patologia , Fagocitose/genética
3.
Autophagy ; 13(7): 1091-1092, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28537472

RESUMO

When it comes to cancer initiation and progression, macroautophagy/autophagy seemingly acts in a contradictory fashion, serving either as a suppressive factor that functions to protect against tumor formation or as a support mechanism that sustains the disease itself through its cytoprotective functions. In tumor suppression, autophagy assists by restricting oxidative stress and curbing genomic instability that could possibly cause oncogenic mutations. However, in certain circumstances, autophagy can also promote cancer by providing nourishment and by limiting stress-response pathways, leading to cancer cell survival and rapid proliferation. Thus, autophagy's role in oncogenesis is highly context-dependent and varies from one cancer type to another. As a consequence, identifying the mechanisms that alter and rewire autophagic regulation and flux is extremely crucial to target autophagy as a possible avenue for anticancer treatment. In a recent study, Qian et al. endeavored to identify one such key regulatory pathway in hypoxia- and glutamine deprivation-induced autophagy in tumorigenic cells. In this pathway, phosphatidylinositol 3-phosphate (PtdIns3P) production by the class III phosphatidylinositol 3-kinase (PtdIns3K) complex is greatly improved through a cascade of posttranslational modifications that culminates in the phosphorylation of the scaffolding protein BECN1 by the glycolytic pathway kinase PGK1.


Assuntos
Autofagia , Proteína Beclina-1/genética , Carcinogênese , Humanos , Fosfoglicerato Quinase , Fosforilação
4.
J Mol Med (Berl) ; 94(11): 1217-1227, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27544281

RESUMO

Autophagy is a major degradation pathway that engulfs, removes, and recycles unwanted cytoplasmic material including damaged organelles and toxic protein aggregates. One type of autophagy, macroautophagy, is a tightly regulated process facilitated by autophagy-related (Atg) proteins that must communicate effectively and act in concert to enable the de novo formation of the phagophore, its maturation into an autophagosome, and its subsequent targeting and fusion with the lysosome or the vacuole. Autophagy plays a significant role in physiology, and its dysregulation has been linked to several diseases, which include certain cancers, cardiomyopathies, and neurodegenerative diseases. Here, we summarize the key processes and the proteins that make up the macroautophagy machinery. We also briefly highlight recently uncovered molecular mechanisms specific to neurons allowing them to uniquely regulate this catabolic process to accommodate their complicated architecture and non-dividing state. Overall, these distinct mechanisms establish a conceptual framework addressing how macroautophagic dysfunction could result in maladies of the nervous system, providing possible therapeutic avenues to explore with a goal of preventing or curing such diseases.


Assuntos
Autofagia , Neurônios/citologia , Neurônios/metabolismo , Animais , Autofagossomos/metabolismo , Humanos , Fusão de Membrana , Modelos Biológicos
5.
Mol Biol Cell ; 24(2): 63-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135999

RESUMO

During cotranslational protein targeting by the signal recognition particle (SRP), information about signal sequence binding in the SRP's M domain must be effectively communicated to its GTPase domain to turn on its interaction with the SRP receptor (SR) and thus deliver the cargo proteins to the membrane. A universally conserved "fingerloop" lines the signal sequence-binding groove of SRP; the precise role of this fingerloop in protein targeting has remained elusive. In this study, we show that the fingerloop plays important roles in SRP function by helping to induce the SRP into a more active conformation that facilitates multiple steps in the pathway, including efficient recruitment of SR, GTPase activation in the SRP•SR complex, and most significantly, the unloading of cargo onto the target membrane. On the basis of these results and recent structural work, we propose that the fingerloop is the first structural element to detect signal sequence binding; this information is relayed to the linker connecting the SRP's M and G domains and thus activates the SRP and SR for carrying out downstream steps in the pathway.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Modificação Traducional de Proteínas , Partícula de Reconhecimento de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico , RNA Bacteriano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA