Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(28): 12752-12763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953682

RESUMO

We report the ability to trap the dimer Au2(µ-dppe)2I2 (dppe is 1,2-bis(diphenylphosphino)ethane) with different separations between the three-coordinate gold ions in crystalline solvates. All of these solvates ((Au2(µ-dppe)2I2·4(CH2Cl2) (1), Au2(µ-dppe)2I2·2(CH2Cl2) (2), the polymorphs α-Au2(µ-dppe)2I2·2(HC(O)NMe2) (3) and ß-Au2(µ-dppe)2I2·2(HC(O)NMe2) (4), and Au2(µ-dppe)2I2·4(CHCl3) (5)) along with polymeric {Au(µ-dppe)I}n·n(CHCl3) (6)) originated from the same reaction, only the solvent system used for crystallization differed. In the different solvates of Au2(µ-dppe)2I2, the Au···Au separation varied from 3.192(1) to 3.7866(3) Å. Computational studies undertaken to understand the flexible nature of these dimers indicated that the structural differences were primarily a result of crystal packing effects with aurophillic interactions having a minimal effect.

2.
Inorg Chem ; 62(11): 4467-4475, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36897254

RESUMO

Synthetic routes to the crystallization of two new box-like complexes, [Au6(Triphos)4(CuBr2)](OTf)5·(CH2Cl2)3·(CH3OH)3·(H2O)4 (1) and [Au6(Triphos)4 (CuCl2)](PF6)5·(CH2Cl2)4 (2) (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine), have been developed. The two centrosymmetric cationic complexes have been structurally characterized through single-crystal X-ray diffraction and shown to contain a CuX2- (X = Br or Cl) unit suspended between two Au(I) centers without the involvement of bridging ligands. These colorless crystals display green luminescence (λem = 527 nm) for (1) and teal luminescence (λem = 464 nm) for (2). Computational results document the metallophilic interactions that are involved in positioning the Cu(I) center between the two Au(I) ions and in the luminescence.

3.
J Am Chem Soc ; 144(26): 11638-11645, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735940

RESUMO

The molecules at the surface of a liquid have different organization and dynamics from those in the bulk, potentially altering the rate of crystal nucleation and polymorphic selection, but this effect remains poorly understood. Here we demonstrate that nucleation at the surface of a pure liquid, d-arabitol, is vastly enhanced, by 12 orders of magnitude, and selects a different polymorph. The surface effect intensifies with cooling and can be inhibited by a dilute, surface-active second component. This phenomenon arises from the anisotropic molecular packing at the interface and its similarity to the surface-nucleating polymorph. Our finding is relevant for controlling the crystallization and polymorphism in any system with a significant interface such as nanodroplets and atmospheric water.


Assuntos
Cristalização , Anisotropia , Transição de Fase
4.
Inorg Chem ; 59(6): 4109-4117, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32096996

RESUMO

The unsymmetrical coordination of gold(I) by 2,2'-bipyridine (bipy) in some planar, three-coordinate cations has been examined by crystallographic and computational studies. The salts [(Ph3P)Au(bipy)]XF6 (X = P, As, Sb) form an isomorphic series in which the differences in Au-N distances range from 0.241(2) to 0.146(2) Å. A second polymorph of [(Ph3P)Au(bipy)]AsF6 has also been found. Both polymorphs exhibit similar structures. The salts [(Et3P)Au(bipy)]XF6 (X = P, As, Sb) form a second isostructural series. In this series the unsymmetrical coordination of the bipy ligand is maintained, but the gold ions are disordered over two unequally populated positions that produce very similar overall structures for the cations. Although many planar, three-coordinate gold(I) complexes are strongly luminescent, the salts [(R3P)Au(bipy)]XF6 (R = Ph or Et; X = P, As, Sb) are not luminescent as solids or in solution. Computational studies revealed that a fully symmetrical structure for [(Et3P)Au(bipy)]+ is 7 kJ/mol higher in energy than the observed unsymmetrical structure and is best described as a transition state between the two limiting unsymmetrical geometries. The Au-N bonding has been examined by natural resonance theory (NRT) calculations using the "12 electron rule". The dominant Lewis structure is one with five lone pairs on Au and one bond to the P atom, which results in a saturated (12 electron) gold center and thereby inhibits the formation of any classical, 2 e- bonds between the gold and either of the bipy nitrogen atoms. The nitrogen atoms may instead donate a lone pair into an empty Au-P antibonding orbital, resulting in a three-center, four-electron (3c/4e) P-Au-N bond. The binuclear complex, [µ2-bipy(AuPPh3)2](PF6)2, has also been prepared and shown to have an aurophillic interaction between the two gold ions, which are separated by 3.0747(3) Å. Despite the aurophillic interaction, this binuclear complex is not luminescent.

5.
Chemistry ; 25(10): 2491-2496, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30575144

RESUMO

Carbon disulfide is cleaved by n-propyldiphenylphosphine and nickel(II) bromide in a one-step process, to form two unprecedented complexes: orange, [Ni(S2 C2 (Pn PrPh2 )2 )Br(Pn PrPh2 )]Br⋅CS2 (1) and purple [Ni{η2 -SC(Pn PrPh2 )2 }Br(Pn PrPh2 )]Br⋅0.5CS2 (2). Orange (1) contains a dithiolene-related ligand that results from carbon-carbon bond formation, while purple (2) contains a remarkable ligand in which two n-propyldiphenylphosphine molecules have added to a carbon atom of a CS unit that is coordinated to nickel.

6.
Inorg Chem ; 58(23): 16011-16027, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786931

RESUMO

Despite utilizing a common cofactor binding motif, hemoproteins bearing a cysteine-derived thiolate ligand (heme-thiolate proteins) are involved in a diverse array of biological processes ranging from drug metabolism to transcriptional regulation. Though the origin of heme-thiolate functional divergence is not well understood, growing evidence suggests that the hydrogen bonding (H-bonding) environment surrounding the Fe-coordinating thiolate influences protein function. Outside of X-ray crystallography, few methods exist to characterize these critical H-bonding interactions. Electron paramagnetic resonance (EPR) spectra of heme-thiolate proteins bearing a six-coordinate, Fe(III) heme exhibit uniquely narrow low-spin (S = 1/2), rhombic signals, which are sensitive to changes in the heme-thiolate H-bonding environment. To establish a well-defined relationship between the magnitude of g-value dispersion in this unique EPR signal and the strength of the heme-thiolate H-bonding environment, we synthesized and characterized of a series of six-coordinate, aryl-thiolate-ligated Fe(III) porphyrin complexes bearing a tunable intramolecular H-bond. Spectroscopic investigation of these complexes revealed a direct correlation between H-bond strength and g-value dispersion in the rhombic EPR signal. Using density functional theory (DFT), we elucidated the electronic origins of the narrow, rhombic EPR signal in heme-thiolates, which arises from an Fe-S pπ-dπ bonding interaction. Computational analysis of the intramolecularly H-bonded heme-thiolate models revealed that H-bond donation to the coordinating thiolate reduces thiolate donor strength and weakens this Fe-S interaction, giving rise to larger g-value dispersion. By defining the relationship between heme-thiolate electronic structure and rhombic EPR signal, it is possible to compare thiolate donor strengths among heme-thiolate proteins through analysis of low-spin, Fe(III) EPR spectra. Thus, this study establishes EPR spectroscopy as a valuable tool for exploring how second coordination sphere effects influence heme-thiolate protein function.


Assuntos
Hemeproteínas/química , Compostos de Sulfidrila/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Ligantes , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 58(3): 887-891, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30476368

RESUMO

We have developed the first intermolecular hetero-[5+2] cycloaddition reaction between oxidopyrylium ylides and cyclic imines with excellent control of regio- and stereoselectivity. Surprisingly, divergent stereochemistry was observed depending on the substitution pattern of the oxidopyrylium ylide. This new reaction provides quick access to highly substituted nitrogen-containing seven-membered rings-azepanes. Notably, a broad range of oxidopyrylium ylides and cyclic imines participate in this novel hetero-[5+2] cycloaddition reaction and the cycloadducts can be readily transformed into the core skeletons of bioactive natural products. DFT calculations revealed that the cycloaddition proceeds through a stepwise pathway and the imine nitrogen atom serves as the nucleophile to initiate the cycloaddition.

9.
Inorg Chem ; 54(9): 4565-73, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25859815

RESUMO

New insight into the complexity of the reaction of the prominent catalyst RuCl2(PPh3)3 with carbon disulfide has been obtained from a combination of X-ray diffraction and (31)P NMR studies. The red-violet compound originally formulated as a cationic π-CS2 complex, [RuCl(π-CS2)(PPh3)3]Cl, has been identified as a neutral molecule, RuCl2(S2CPPh3)(PPh3)2, which contains the unstable zwitterion S2CPPh3. In the absence of RuCl2(PPh3)3, there is no sign of a reaction between triphenylphosphine and carbon disulfide, although more basic trialkylphosphines form red adducts, S2CPR3. Despite the presence of an unstable ligand, RuCl2(S2CPPh3)(PPh3)2 is remarkably stable. It survives melting at 173-174 °C intact, is stable to air, and undergoes reversible electrochemical oxidation to form a monocation. When the reaction of RuCl2(PPh3)3 with carbon disulfide is conducted in the presence of methanol, crystals of orange [RuCl(S2CPPh3)(CS)(PPh3)2]Cl·2MeOH and yellow RuCl2(CS)(MeOH)(PPh3)2 also form. (31)P NMR studies indicate that the unsymmetrical dinuclear complex (SC)(Ph3P)2Ru(µ-Cl)3Ru(PPh3)2Cl is the initial product of the reaction of RuCl2(PPh3)3 with carbon disulfide. A path connecting the isolated products is presented.

10.
Acta Crystallogr C Struct Chem ; 79(Pt 4): 133-141, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36919971

RESUMO

Nitrogen heterocycles are a class of organic compounds with extremely versatile functionality. Imidines, HN[C(NH)R]2, are a rare class of heterocycles related to imides, HN[C(O)R]2, in which the O atoms of the carbonyl groups are replaced by N-H groups. The useful synthesis of the imidine compounds succinimidine and glutarimidine, as well as their partially hydrolyzed imino-imide congeners, was first described in the mid-1950s, though structural characterization is presented for the first time in this article. In the solid state, these structures are different from the proposed imidine form: succinimidine crystallizes as an imino-amine, 2-imino-3,4-dihydro-2H-pyrrol-5-amine, C4H7N2 (1), glutarimidine as 6-imino-3,4,5,6-tetrahydropyridin-2-amine methanol monosolvate, C5H9N3·CH3OH (2), and the corresponding hydrolyzed imino-imide compounds as amino-amides 5-amino-3,4-dihydro-2H-pyrrol-2-one, C4H6N2O (3), and 6-amino-4,5-dihydropyridin-2(3H)-one, C5H8N2O (4). Imidine 1 was also determined as the hydrochloride salt solvate 5-amino-3,4-dihydro-2H-pyrrol-2-iminium chloride-2-imino-3,4-dihydro-2H-pyrrol-5-amine-water (1/1/1), C4H8N3+·Cl-·C4H7N3·H2O (1·HCl). As such, 1 and 2 show alternating short and long C-N bonds across the molecule, revealing distinct imino (C=NH) and amine (C-NH2) groups throughout the C-N backbone. These structures provide definitive evidence for the predominant imino-amine tautomer in the solid state, which serves to enrich the previously proposed imidine-focused structures that have appeared in organic chemistry textbooks since the discovery of this class of compounds in 1883.

11.
Chem Sci ; 11(4): 1170-1175, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34084374

RESUMO

Catalytic N-N coupling is a valuable transformation for chemical synthesis and energy conversion. Here, mechanistic studies are presented for two related copper-catalyzed oxidative aerobic N-N coupling reactions, one involving the synthesis of a pharmaceutically relevant triazole and the other relevant to the oxidative conversion of ammonia to hydrazine. Analysis of catalytic and stoichiometric N-N coupling reactions support an "oxidase"-type catalytic mechanism with two redox half-reactions: (1) aerobic oxidation of a CuI catalyst and (2) CuII-promoted N-N coupling. Both reactions feature turnover-limiting oxidation of CuI by O2, and this step is inhibited by the N-H substrate(s). The results highlight the unexpected facility of the N-N coupling step and establish a foundation for development of improved catalysts for these transformations.

12.
ACS Cent Sci ; 5(8): 1377-1386, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31482120

RESUMO

The stability and formation of a perovskite structure is dictated by the Goldschmidt tolerance factor as a general geometric guideline. The tolerance factor has limited the choice of cations (A) in 3D lead iodide perovskites (APbI3), an intriguing class of semiconductors for high-performance photovoltaics and optoelectronics. Here, we show the tolerance factor requirement is relaxed in 2D Ruddlesden-Popper (RP) perovskites, enabling the incorporation of a variety of larger cations beyond the methylammonium (MA), formamidinium, and cesium ions in the lead iodide perovskite cages for the first time. This is unequivocally confirmed with the single-crystal X-ray structure of newly synthesized guanidinium (GA)-based (n-C6H13NH3)2(GA)Pb2I7, which exhibits significantly enlarged and distorted perovskite cage containing sterically constrained GA cation. Structural comparison with (n-C6H13NH3)2(MA)Pb2I7 reveals that the structural stabilization originates from the mitigation of strain accumulation and self-adjustable strain-balancing in 2D RP structures. Furthermore, spectroscopic studies show a large A cation significantly influences carrier dynamics and exciton-phonon interactions through modulating the inorganic sublattice. These results enrich the diverse families of perovskite materials, provide new insights into the mechanistic role of A-site cations on their physical properties, and have implications to solar device studies using engineered perovskite thin films incorporating such large organic cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA