Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 152(3): 557-69, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374350

RESUMO

Dimerization-driven activation of the intracellular kinase domains of the epidermal growth factor receptor (EGFR) upon extracellular ligand binding is crucial to cellular pathways regulating proliferation, migration, and differentiation. Inactive EGFR can exist as both monomers and dimers, suggesting that the mechanism regulating EGFR activity may be subtle. The membrane itself may play a role but creates substantial difficulties for structural studies. Our molecular dynamics simulations of membrane-embedded EGFR suggest that, in ligand-bound dimers, the extracellular domains assume conformations favoring dimerization of the transmembrane helices near their N termini, dimerization of the juxtamembrane segments, and formation of asymmetric (active) kinase dimers. In ligand-free dimers, by holding apart the N termini of the transmembrane helices, the extracellular domains instead favor C-terminal dimerization of the transmembrane helices, juxtamembrane segment dissociation and membrane burial, and formation of symmetric (inactive) kinase dimers. Electrostatic interactions of EGFR's intracellular module with the membrane are critical in maintaining this coupling.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/química , Membrana Celular/química , Dimerização , Receptores ErbB/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática
2.
Cell ; 152(3): 543-56, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374349

RESUMO

How the epidermal growth factor receptor (EGFR) activates is incompletely understood. The intracellular portion of the receptor is intrinsically active in solution, and to study its regulation, we measured autophosphorylation as a function of EGFR surface density in cells. Without EGF, intact EGFR escapes inhibition only at high surface densities. Although the transmembrane helix and the intracellular module together suffice for constitutive activity even at low densities, the intracellular module is inactivated when tethered on its own to the plasma membrane, and fluorescence cross-correlation shows that it fails to dimerize. NMR and functional data indicate that activation requires an N-terminal interaction between the transmembrane helices, which promotes an antiparallel interaction between juxtamembrane segments and release of inhibition by the membrane. We conclude that EGF binding removes steric constraints in the extracellular module, promoting activation through N-terminal association of the transmembrane helices.


Assuntos
Membrana Celular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/química , Transdução de Sinais , Animais , Células COS , Membrana Celular/química , Chlorocebus aethiops , Dimerização , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares
3.
Cell ; 149(4): 860-70, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22579287

RESUMO

The mutation and overexpression of the epidermal growth factor receptor (EGFR) are associated with the development of a variety of cancers, making this prototypical dimerization-activated receptor tyrosine kinase a prominent target of cancer drugs. Using long-timescale molecular dynamics simulations, we find that the N lobe dimerization interface of the wild-type EGFR kinase domain is intrinsically disordered and that it becomes ordered only upon dimerization. Our simulations suggest, moreover, that some cancer-linked mutations distal to the dimerization interface, particularly the widespread L834R mutation (also referred to as L858R), facilitate EGFR dimerization by suppressing this local disorder. Corroborating these findings, our biophysical experiments and kinase enzymatic assays indicate that the L834R mutation causes abnormally high activity primarily by promoting EGFR dimerization rather than by allowing activation without dimerization. We also find that phosphorylation of EGFR kinase domain at Tyr845 may suppress the intrinsic disorder, suggesting a molecular mechanism for autonomous EGFR signaling.


Assuntos
Receptores ErbB/química , Receptores ErbB/genética , Neoplasias/metabolismo , Mutação Puntual , Transdução de Sinais , Sequência de Aminoácidos , Cristalografia por Raios X , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Lapatinib , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Dobramento de Proteína , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Estrutura Terciária de Proteína , Quinazolinas/farmacologia , Alinhamento de Sequência
4.
Nature ; 592(7852): 86-92, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33473216

RESUMO

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Assuntos
Potenciais de Ação/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Animais , Conjuntos de Dados como Assunto , Eletrofisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/fisiologia , Córtex Visual/citologia
5.
PLoS Comput Biol ; 20(3): e1011921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452057

RESUMO

In an ever-changing visual world, animals' survival depends on their ability to perceive and respond to rapidly changing motion cues. The primary visual cortex (V1) is at the forefront of this sensory processing, orchestrating neural responses to perturbations in visual flow. However, the underlying neural mechanisms that lead to distinct cortical responses to such perturbations remain enigmatic. In this study, our objective was to uncover the neural dynamics that govern V1 neurons' responses to visual flow perturbations using a biologically realistic computational model. By subjecting the model to sudden changes in visual input, we observed opposing cortical responses in excitatory layer 2/3 (L2/3) neurons, namely, depolarizing and hyperpolarizing responses. We found that this segregation was primarily driven by the competition between external visual input and recurrent inhibition, particularly within L2/3 and L4. This division was not observed in excitatory L5/6 neurons, suggesting a more prominent role for inhibitory mechanisms in the visual processing of the upper cortical layers. Our findings share similarities with recent experimental studies focusing on the opposing influence of top-down and bottom-up inputs in the mouse primary visual cortex during visual flow perturbations.


Assuntos
Córtex Visual , Camundongos , Animais , Córtex Visual/fisiologia , Estimulação Luminosa , Neurônios/fisiologia , Sensação , Percepção Visual/fisiologia
6.
J Physiol ; 601(15): 3123-3139, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36567262

RESUMO

The Hodgkin-Huxley model of action potential generation and propagation, published in the Journal of Physiology in 1952, initiated the field of biophysically detailed computational modelling in neuroscience, which has expanded to encompass a variety of species and components of the nervous system. Here we review the developments in this area with a focus on efforts in the community towards modelling the mammalian neocortex using spatially extended conductance-based neuronal models. The Hodgkin-Huxley formalism and related foundational contributions, such as Rall's cable theory, remain widely used in these efforts to the current day. We argue that at present the field is undergoing a qualitative change due to new very rich datasets describing the composition, connectivity and functional activity of cortical circuits, which are being integrated systematically into large-scale network models. This trend, combined with the accelerating development of convenient software tools supporting such complex modelling projects, is giving rise to highly detailed models of the cortex that are extensively constrained by the data, enabling computational investigation of a multitude of questions about cortical structure and function.


Assuntos
Neocórtex , Neurônios , Animais , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Mamíferos
7.
Entropy (Basel) ; 24(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359629

RESUMO

A hypothesis is presented that non-separability of degrees of freedom is the fundamental property underlying consciousness in physical systems. The amount of consciousness in a system is determined by the extent of non-separability and the number of degrees of freedom involved. Non-interacting and feedforward systems have zero consciousness, whereas most systems of interacting particles appear to have low non-separability and consciousness. By contrast, brain circuits exhibit high complexity and weak but tightly coordinated interactions, which appear to support high non-separability and therefore high amount of consciousness. The hypothesis applies to both classical and quantum cases, and we highlight the formalism employing the Wigner function (which in the classical limit becomes the Liouville density function) as a potentially fruitful framework for characterizing non-separability and, thus, the amount of consciousness in a system. The hypothesis appears to be consistent with both the Integrated Information Theory and the Orchestrated Objective Reduction Theory and may help reconcile the two. It offers a natural explanation for the physical properties underlying the amount of consciousness and points to methods of estimating the amount of non-separability as promising ways of characterizing the amount of consciousness.

8.
PLoS Comput Biol ; 16(11): e1008386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253147

RESUMO

Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting opportunities and formidable challenges to existing theoretical and modeling approaches. To turn massive datasets into predictive quantitative frameworks, the field needs software solutions for systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and others, BMTK offers a consistent user experience across multiple levels of resolution. It permits highly sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is an open-source package provided as a resource supporting modeling-based discovery in the community.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Biologia Computacional , Software , Potenciais de Ação , Fenômenos Biofísicos , Humanos , Rede Nervosa
9.
PLoS Comput Biol ; 16(2): e1007696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092054

RESUMO

Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-performance data format is necessary. To address this need, we have developed the Scalable Open Network Architecture TemplAte (SONATA) data format. It is designed for memory and computational efficiency and works across multiple platforms. The format represents neuronal circuits and simulation inputs and outputs via standardized files and provides much flexibility for adding new conventions or extensions. SONATA is used in multiple modeling and visualization tools, and we also provide reference Application Programming Interfaces and model examples to catalyze further adoption. SONATA format is free and open for the community to use and build upon with the goal of enabling efficient model building, sharing, and reproducibility.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/métodos , Neurociências , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Linguagens de Programação , Reprodutibilidade dos Testes , Software
10.
PLoS Comput Biol ; 14(11): e1006535, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30419013

RESUMO

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.


Assuntos
Córtex Visual/fisiologia , Animais , Simulação por Computador , Camundongos , Modelos Neurológicos , Neurônios/metabolismo , Sinapses/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia
11.
Proc Natl Acad Sci U S A ; 113(27): 7337-44, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27382147

RESUMO

The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.


Assuntos
Modelos Neurológicos , Neurociências/métodos , Córtex Visual/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Análise de Sistemas
12.
Proc Natl Acad Sci U S A ; 110(18): 7270-5, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23576739

RESUMO

The epidermal growth factor receptor (EGFR) is a key protein in cellular signaling, and its kinase domain (EGFR kinase) is an intensely pursued target of small-molecule drugs. Although both catalytically active and inactive conformations of EGFR kinase have been resolved crystallographically, experimental characterization of the transitions between these conformations remains difficult. Using unbiased, all-atom molecular dynamics simulations, we observed EGFR kinase spontaneously transition from the active to the so-called "Src-like inactive" conformation by way of two sets of intermediate conformations: One corresponds to a previously identified locally disordered state and the other to previously undescribed "extended" conformations, marked by the opening of the ATP-binding site between the two lobes of the kinase domain. We also simulated the protonation-dependent transition of EGFR kinase to another ["Asp-Phe-Gly-out" ("DFG-out")] inactive conformation and observed similar intermediate conformations. A key element observed in the simulated transitions is local unfolding, or "cracking," which supports a prediction of energy landscape theory. We used hydrogen-deuterium (H/D) exchange measurements to corroborate our simulations and found that the simulated intermediate conformations correlate better with the H/D exchange data than existing active or inactive EGFR kinase crystal structures. The intermediate conformations revealed by our simulations of the transition process differ significantly from the existing crystal structures and may provide unique possibilities for structure-based drug discovery.


Assuntos
Biocatálise , Receptores ErbB/química , Motivos de Aminoácidos , Cristalografia por Raios X , Medição da Troca de Deutério , Ativação Enzimática , Receptores ErbB/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Quinases da Família src/química , Quinases da Família src/metabolismo
13.
PLoS Comput Biol ; 10(7): e1003742, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25058506

RESUMO

The epidermal growth factor receptor (EGFR) plays a key role in regulating cell proliferation, migration, and differentiation, and aberrant EGFR signaling is implicated in a variety of cancers. EGFR signaling is triggered by extracellular ligand binding, which promotes EGFR dimerization and activation. Ligand-binding measurements are consistent with a negatively cooperative model in which the ligand-binding affinity at either binding site in an EGFR dimer is weaker when the other site is occupied by a ligand. This cooperativity is widely believed to be central to the effects of ligand concentration on EGFR-mediated intracellular signaling. Although the extracellular portion of the human EGFR dimer has been resolved crystallographically, the crystal structures do not reveal the structural origin of this negative cooperativity, which has remained unclear. Here we report the results of molecular dynamics simulations suggesting that asymmetrical interactions of the two binding sites with the membrane may be responsible (perhaps along with other factors) for this negative cooperativity. In particular, in our simulations the extracellular domains of an EGFR dimer spontaneously lay down on the membrane in an orientation in which favorable membrane contacts were made with one of the bound ligands, but could not be made with the other. Similar interactions were observed when EGFR was glycosylated, as it is in vivo.


Assuntos
Membrana Celular/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Animais , Sítios de Ligação , Galinhas , Biologia Computacional , Ligantes , Mamíferos , Simulação de Dinâmica Molecular , Conformação Proteica , Peixe-Zebra
14.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293236

RESUMO

The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.

15.
Neuron ; 112(11): 1876-1890.e4, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447579

RESUMO

In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.


Assuntos
Interneurônios , Somatostatina , Peptídeo Intestinal Vasoativo , Córtex Visual , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Visual/fisiologia , Camundongos , Somatostatina/metabolismo , Interneurônios/fisiologia , Inibição Neural/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
16.
Neuron ; 111(2): 275-290.e5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36368317

RESUMO

The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.


Assuntos
Claustrum , Camundongos , Animais , Claustrum/fisiologia , Gânglios da Base/fisiologia , Lobo Frontal , Neurônios/fisiologia , Optogenética
17.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961331

RESUMO

Recent studies have found dramatic cell-type specific responses to stimulus novelty, highlighting the importance of analyzing the cortical circuitry at the cell-type specific level of granularity to understand brain function. Although initial work classified and characterized activity for each cell type, the specific alterations in cortical circuitry-particularly when multiple novelty effects interact-remain unclear. To address this gap, we employed a large-scale public dataset of electrophysiological recordings in the visual cortex of awake, behaving mice using Neuropixels probes and designed population network models to investigate the observed changes in neural dynamics in response to a combination of distinct forms of novelty. The model parameters were rigorously constrained by publicly available structural datasets, including multi-patch synaptic physiology and electron microscopy data. Our systematic optimization approach identified tens of thousands of model parameter sets that replicate the observed neural activity. Analysis of these solutions revealed generally weaker connections under novel stimuli, as well as a shift in the balance e between SST and VIP populations. Along with this, PV and SST populations experienced overall more excitatory influences compared to excitatory and VIP populations. Our results also highlight the role of VIP neurons in multiple aspects of visual stimulus processing and altering gain and saturation dynamics under novel conditions. In sum, our findings provide a systematic characterization of how the cortical circuit adapts to stimulus novelty by combining multiple rich public datasets.

18.
Elife ; 122023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486105

RESUMO

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.


Assuntos
Neurônios , Córtex Visual Primário , Animais , Camundongos , Neurônios/fisiologia , Encéfalo , Modelos Neurológicos
19.
Front Comput Neurosci ; 17: 1040629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994445

RESUMO

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.

20.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35022186

RESUMO

Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis-quantifying distinct patterns of neurophysiological activity-has been proposed as an "inside-out" approach that addresses this question. This methodology contrasts with "outside-in" approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.


Assuntos
Córtex Visual , Animais , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Neurônios/fisiologia , Neurofisiologia , Estimulação Luminosa , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA