Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35535520

RESUMO

Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Células-Tronco Neurais , Animais , Proliferação de Células/fisiologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Camundongos , Células-Tronco Neurais/metabolismo
2.
PLoS Genet ; 17(11): e1009868, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752469

RESUMO

While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.


Assuntos
Neoplasias Encefálicas/genética , Replicação do DNA/genética , Instabilidade Genômica , Glioma/genética , Histonas/fisiologia , Neoplasias Encefálicas/patologia , Criança , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Mitose/genética
3.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077248

RESUMO

Medulloblastoma is a pediatric brain malignancy that consists of four transcriptional subgroups. Structural and numerical aneuploidy are common in all subgroups, although they are particularly profound in Group 3 and Group 4 medulloblastoma and in a subtype of SHH medulloblastoma termed SHHα. This suggests that chromosomal instability (CIN), the process leading to aneuploidy, is an important player in medulloblastoma pathophysiology. However, it is not known if there is ongoing CIN in medulloblastoma or if CIN affects the developing cerebellum and promotes tumor formation. To investigate this, we performed karyotyping of single medulloblastoma cells and demonstrated the presence of distinct tumor cell clones harboring unique copy number alterations, which is suggestive of ongoing CIN. We also found enrichment for processes related to DNA replication, repair, and mitosis in both SHH medulloblastoma and in the highly proliferative compartment of the presumed tumor cell lineage-of-origin, the latter also being sensitive to genotoxic stress. However, when challenging these tumor cells-of-origin with genetic lesions inducing CIN using transgenic mouse modeling, we found no evidence for large chromosomal aberrations in the cerebellum or for medulloblastoma formation. We therefore conclude that without a background of specific genetic mutations, CIN is not tolerated in the developing cerebellum in vivo and, thus, by itself is not sufficient to initiate medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Aneuploidia , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Instabilidade Cromossômica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos
4.
J Urol ; 193(3): 1023-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25242390

RESUMO

PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are responsible for this continued activity, which influences the efficacy of prostate cancer treatment. We hypothesized that combining a 5α-reductase inhibitor and an antiandrogen would block intratumor androgen synthesis and androgen receptor protein activity. Thus, it would act synergistically to reduce tumor cell proliferation. MATERIALS AND METHODS: The expression level of 5α-reductase and androgen receptor in endocrine therapy naïve prostate cancer and castration resistant prostate cancer tissues, and cell line models was determined by microarray and quantitative polymerase chain reaction analysis. Intracellular androgen was measured with radioimmunoassay. Tumor cell proliferation was determined using coloric MTT assay. The synergistic effects of combination treatments on tumor cell proliferation were calculated using the Chou-Talalay equation. RESULTS: In all prostate cancer cases 5α-reductase-1 and 3 were up-regulated. Androgen receptor was up-regulated in metastatic prostate cancer and castration resistant prostate cancer cases. The 5α-reductase inhibitor dutasteride effectively decreased dihydrotestosterone production in prostate cancer and castration resistant prostate cancer cell lines. Furthermore, dutasteride combined with the novel antiandrogen enzalutamide synergistically suppressed endocrine therapy naïve prostate cancer and castration resistant prostate cancer cell proliferation. CONCLUSIONS: In this study the combination of a 5α-reductase inhibitor and (novel) antiandrogens synergistically inhibited tumor cell proliferation. These findings support clinical studies of combinations of a 5α-reductase inhibitor and (novel) antiandrogens as first line treatment of prostate cancer and castration resistant prostate cancer.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Azasteroides/farmacologia , Proliferação de Células/efeitos dos fármacos , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias da Próstata/patologia , Benzamidas , Sinergismo Farmacológico , Quimioterapia Combinada , Dutasterida , Humanos , Masculino , Nitrilas , Feniltioidantoína/farmacologia , Células Tumorais Cultivadas
5.
Sci Rep ; 11(1): 16077, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373489

RESUMO

While there has been significant progress in the molecular characterization of the childhood brain cancer medulloblastoma, the tumor proteome remains less explored. However, it is important to obtain a complete understanding of medulloblastoma protein biology, since interactions between proteins represent potential new drug targets. Using previously generated phosphoprotein signaling-profiles of a large cohort of primary medulloblastoma, we discovered that phosphorylation of transcription factor CREB strongly correlates with medulloblastoma survival and associates with a differentiation phenotype. We further found that during normal cerebellar development, phosphorylated CREB was selectively expressed in differentiating cerebellar granule neuron progenitor (CGNP) cells. In line, we observed increased differentiation in CGNPs treated with Forskolin, Bmp6 and Bmp12 (Gdf7), which induce CREB phosphorylation. Lastly, we demonstrated that inducing CREB activation via PKA-mediated CREB signaling, but not Bmp/MEK/ERK mediated signalling, enhances medulloblastoma cell sensitivity to chemotherapy.


Assuntos
Diferenciação Celular/fisiologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação/fisiologia , Fatores de Transcrição/metabolismo
6.
Oncoimmunology ; 5(6): e1164919, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27471639

RESUMO

Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.

7.
Prostate Int ; 2(3): 105-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25325021

RESUMO

Development of castration-resistant prostate cancer (CRPC) in a low androgen environment, arising from androgen deprivation therapy (ADT), is a major problem in patients with advanced prostate cancer (PCa). Several mechanisms have been hypothesized to explain the progression of PCa to CRPC during ADT, one of them is so called persistent intratumoral steroidogenesis. The existence of intratumoral steroidogenesis was hinted based on the residual levels of intraprostatic testosterone (T) and dihydrotestosterone (DHT) after ADT. Accumulating evidence has shown that the intraprostatic androgen levels after ADT are sufficient to induce cancer progression. Several studies now have demonstrated that PCa cells are able to produce T and DHT from different androgen precursors, such as cholesterol and the adrenal androgen, dehydroepiandrosterone (DHEA). Furthermore, up-regulation of genes encoding key steroidogenic enzymes in PCa cells seems to be an indicator for active intratumoral steroidogenesis in CRPC cells. Currently, several drugs are being developed targeting those steroidogenic enzymes, some of which are now in clinical trials or are being used as standard care for CRPC patients. In the future, novel agents that target steroidogenesis may add to the arsenal of drugs for CRPC therapy.

8.
Oncotarget ; 5(16): 6558-72, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25115382

RESUMO

Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Quimioprevenção , Humanos , Imunoterapia/métodos , Neoplasias/enzimologia , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA