Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 381(6658): eabq5693, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561875

RESUMO

Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.


Assuntos
Metilação de DNA , Epigênese Genética , Mamíferos , Adulto , Animais , Humanos , Epigenoma , Genoma , Mamíferos/genética , Filogenia
2.
Nat Commun ; 13(1): 783, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145108

RESUMO

Infinium methylation arrays are not available for the vast majority of non-human mammals. Moreover, even if species-specific arrays were available, probe differences between them would confound cross-species comparisons. To address these challenges, we developed the mammalian methylation array, a single custom array that measures up to 36k CpGs per species that are well conserved across many mammalian species. We designed a set of probes that can tolerate specific cross-species mutations. We annotate the array in over 200 species and report CpG island status and chromatin states in select species. Calibration experiments demonstrate the high fidelity in humans, rats, and mice. The mammalian methylation array has several strengths: it applies to all mammalian species even those that have not yet been sequenced, it provides deep coverage of conserved cytosines facilitating the development of epigenetic biomarkers, and it increases the probability that biological insights gained in one species will translate to others.


Assuntos
Sequência Conservada , Metilação de DNA , Mamíferos/genética , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Biomarcadores , Ilhas de CpG , Epigênese Genética , Humanos , Camundongos , Mutação , Ratos , Transcriptoma
3.
Geroscience ; 44(2): 699-717, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34591235

RESUMO

DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.


Assuntos
Epigênese Genética , Epigenômica , Animais , Chlorocebus aethiops , Metilação de DNA , Longevidade , Macaca mulatta/genética , Mamíferos
4.
NAR Genom Bioinform ; 3(3): lqab084, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532708

RESUMO

[This corrects the article DOI: 10.1093/nargab/lqaa104.].

5.
NAR Genom Bioinform ; 2(4): lqaa104, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33543124

RESUMO

ConsHMM is a method recently introduced to annotate genomes into conservation states, which are defined based on the combinatorial and spatial patterns of which species align to and match a reference genome in a multi-species DNA sequence alignment. Previously, ConsHMM was only applied to a single genome for one multi-species sequence alignment. Here, we apply ConsHMM to produce 22 additional genome annotations covering human and seven other organisms for a variety of multi-species alignments. Additionally, we extend ConsHMM to generate allele-specific annotations, which we use to produce conservation state annotations for every possible single-nucleotide mutation in the human genome. Finally, we provide a web interface to interactively visualize parameters and annotation enrichments for ConsHMM models. These annotations and visualizations comprise the ConsHMM Atlas, which we expect will be a valuable resource for analyzing a variety of major genomes and genetic variation.

6.
Nat Commun ; 11(1): 6168, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268804

RESUMO

Annotations of evolutionary sequence constraint based on multi-species genome alignments and genome-wide maps of epigenomic marks and transcription factor binding provide important complementary information for understanding the human genome and genetic variation. Here we developed the Constrained Non-Exonic Predictor (CNEP) to quantify the evidence of each base in the genome being in an evolutionarily constrained non-exonic element from an input of over 60,000 epigenomic and transcription factor binding features. We find that the CNEP score outperforms baseline and related existing scores at predicting evolutionarily constrained non-exonic bases from such data. However, a subset of them are still not well predicted by CNEP. We developed a complementary Conservation Signature Score by CNEP (CSS-CNEP) that is predictive of those bases. We further characterize the nature of constrained non-exonic bases with low CNEP scores using additional types of information. CNEP and CSS-CNEP are resources for analyzing constrained non-exonic bases in the genome.


Assuntos
Genoma , Íntrons , Invertebrados/genética , Fatores de Transcrição/metabolismo , Vertebrados/genética , Animais , Sequência de Bases , Epigênese Genética , Evolução Molecular , Éxons , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética
7.
Commun Biol ; 2: 248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286065

RESUMO

Comparative genomics sequence data is an important source of information for interpreting genomes. Genome-wide annotations based on this data have largely focused on univariate scores or binary elements of evolutionary constraint. Here we present a complementary whole genome annotation approach, ConsHMM, which applies a multivariate hidden Markov model to learn de novo 'conservation states' based on the combinatorial and spatial patterns of which species align to and match a reference genome in a multiple species DNA sequence alignment. We applied ConsHMM to a 100-way vertebrate sequence alignment to annotate the human genome at single nucleotide resolution into 100 conservation states. These states have distinct enrichments for other genomic information including gene annotations, chromatin states, repeat families, and bases prioritized by various variant prioritization scores. Constrained elements have distinct heritability partitioning enrichments depending on their conservation state assignment. ConsHMM conservation states are a resource for analyzing genomes and genetic variants.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Anotação de Sequência Molecular/métodos , Cromatina/metabolismo , Análise por Conglomerados , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Cadeias de Markov , Análise Multivariada , Nucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA