Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35031564

RESUMO

Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F. Grewe et al., Nature 543, 670-675 (2017); M. T. Rogan, U. V. Stäubli, J. E. LeDoux, Nature 390, 604-607 (1997)], the underlying structural changes at the synapse level remain poorly understood. Here, we capture synaptic changes in the midlarval zebrafish brain that occur during associative memory formation by imaging excitatory synapses labeled with recombinant probes using selective plane illumination microscopy. Imaging the same subjects before and after classical conditioning at single-synapse resolution provides an unbiased mapping of synaptic changes accompanying memory formation. In control animals and animals that failed to learn the task, there were no significant changes in the spatial patterns of synapses in the pallium, which contains the equivalent of the mammalian amygdala and is essential for associative learning in teleost fish [M. Portavella, J. P. Vargas, B. Torres, C. Salas, Brain Res. Bull 57, 397-399 (2002)]. In zebrafish that formed memories, we saw a dramatic increase in the number of synapses in the ventrolateral pallium, which contains neurons active during memory formation and retrieval. Concurrently, synapse loss predominated in the dorsomedial pallium. Surprisingly, we did not observe significant changes in the intensity of synaptic labeling, a proxy for synaptic strength, with memory formation in any region of the pallium. Our results suggest that memory formation due to classical conditioning is associated with reciprocal changes in synapse numbers in the pallium.


Assuntos
Larva/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Peixe-Zebra/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Aprendizagem/fisiologia
2.
Nat Methods ; 15(10): 823-831, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275587

RESUMO

Optical assays of synaptic strength could facilitate studies of neuronal transmission and its dysregulation in disease. Here we introduce a genetic toolbox for all-optical interrogation of synaptic electrophysiology (synOptopatch) via mutually exclusive expression of a channelrhodopsin actuator and an archaerhodopsin-derived voltage indicator. Optically induced activity in the channelrhodopsin-expressing neurons generated excitatory and inhibitory postsynaptic potentials that we optically resolved in reporter-expressing neurons. We further developed a yellow spine-targeted Ca2+ indicator to localize optogenetically triggered synaptic inputs. We demonstrated synOptopatch recordings in cultured rodent neurons and in acute rodent brain slice. In synOptopatch measurements of primary rodent cultures, acute ketamine administration suppressed disynaptic inhibitory feedbacks, mimicking the effect of this drug on network function in both rodents and humans. We localized this action of ketamine to excitatory synapses onto interneurons. These results establish an in vitro all-optical model of disynaptic disinhibition, a synaptic defect hypothesized in schizophrenia-associated psychosis.


Assuntos
Potenciais de Ação , Ketamina/farmacologia , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 115(46): E10859-E10868, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30377270

RESUMO

Vertebrate embryogenesis and organogenesis are driven by cell biological processes, ranging from mitosis and migration to changes in cell size and polarity, but their control and causal relationships are not fully defined. Here, we use the developing limb skeleton to better define the relationships between mitosis and cell polarity. We combine protein-tagging and -perturbation reagents with advanced in vivo imaging to assess the role of Discs large 1 (Dlg1), a membrane-associated scaffolding protein, in mediating the spatiotemporal relationship between cytokinesis and cell polarity. Our results reveal that Dlg1 is enriched at the midbody during cytokinesis and that its multimerization is essential for the normal polarity of daughter cells. Defects in this process alter tissue dimensions without impacting other cellular processes. Our results extend the conventional view that division orientation is established at metaphase and anaphase and suggest that multiple mechanisms act at distinct phases of the cell cycle to transmit cell polarity. The approach employed can be used in other systems, as it offers a robust means to follow and to eliminate protein function and extends the Phasor approach for studying in vivo protein interactions by frequency-domain fluorescence lifetime imaging microscopy of Förster resonance energy transfer (FLIM-FRET) to organotypic explant culture.


Assuntos
Polaridade Celular/fisiologia , Citocinese/fisiologia , Proteína 1 Homóloga a Discs-Large/metabolismo , Anáfase , Animais , Cartilagem/metabolismo , Cartilagem/fisiologia , Ciclo Celular , Embrião de Galinha , Condrócitos/metabolismo , Proteína 1 Homóloga a Discs-Large/fisiologia , Desenvolvimento Embrionário , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Humanos , Metáfase , Camundongos , Camundongos Knockout , Microscopia de Fluorescência/métodos , Mitose/fisiologia , Morfogênese/fisiologia , Vertebrados/metabolismo
4.
Nat Methods ; 14(9): 869-872, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28628128

RESUMO

We improve multiphoton structured illumination microscopy using a nonlinear guide star to determine optical aberrations and a deformable mirror to correct them. We demonstrate our method on bead phantoms, cells in collagen gels, nematode larvae and embryos, Drosophila brain, and zebrafish embryos. Peak intensity is increased (up to 40-fold) and resolution recovered (up to 176 ± 10 nm laterally, 729 ± 39 nm axially) at depths ∼250 µm from the coverslip surface.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Lentes , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Nat Methods ; 13(8): 673-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271196

RESUMO

Although neuronal activity can be modulated using a variety of techniques, there are currently few methods for controlling neuronal connectivity. We introduce a tool (GFE3) that mediates the fast, specific and reversible elimination of inhibitory synaptic inputs onto genetically determined neurons. GFE3 is a fusion between an E3 ligase, which mediates the ubiquitination and rapid degradation of proteins, and a recombinant, antibody-like protein (FingR) that binds to gephyrin. Expression of GFE3 leads to a strong and specific reduction of gephyrin in culture or in vivo and to a substantial decrease in phasic inhibition onto cells that express GFE3. By temporarily expressing GFE3 we showed that inhibitory synapses regrow following ablation. Thus, we have created a simple, reversible method for modulating inhibitory synaptic input onto genetically determined cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Hipocampo , Masculino , Transtornos Motores/metabolismo , Transtornos Motores/patologia , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/citologia , Coluna Vertebral/metabolismo , Ubiquitinação , Peixe-Zebra
6.
J Neurosci ; 36(22): 5914-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251614

RESUMO

UNLABELLED: The role of GABAergic signaling in establishing a critical period for experience in visual cortex is well understood. However, the effects of early experience on GABAergic synapses themselves are less clear. Here, we show that monocular deprivation (MD) during the adolescent critical period produces marked enhancement of GABAergic signaling in layer 2/3 of mouse monocular visual cortex. This enhancement coincides with a weakening of glutamatergic inputs, resulting in a significant reduction in the ratio of excitation to inhibition. The potentiation of GABAergic transmission arises from both an increased number of inhibitory synapses and an enhancement of presynaptic GABA release from parvalbumin- and somatostatin-expressing interneurons. Our results suggest that augmented GABAergic inhibition contributes to the experience-dependent regulation of visual function. SIGNIFICANCE STATEMENT: Visual experience shapes the synaptic organization of cortical circuits in the mouse brain. Here, we show that monocular visual deprivation enhances GABAergic synaptic inhibition in primary visual cortex. This enhancement is mediated by an increase in both the number of postsynaptic GABAergic synapses and the probability of presynaptic GABA release. Our results suggest a contributing mechanism to altered visual responses after deprivation.


Assuntos
Neurônios GABAérgicos/fisiologia , Inibição Neural/fisiologia , Privação Sensorial/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Vias Visuais/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Channelrhodopsins , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Lateralidade Funcional , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/genética , Parvalbuminas/genética , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Sinapses/efeitos dos fármacos , Sinapses/genética , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Córtex Visual/crescimento & desenvolvimento
7.
J Neurochem ; 135(4): 666-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26212614

RESUMO

The Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) forms 12meric holoenzymes. These holoenzymes cluster into larger aggregates within neurons under ischemic conditions and in vitro when ischemic conditions are mimicked. This aggregation is thought to be mediated by interaction between the regulatory domain of one kinase subunit with the T-site of another kinase subunit in a different holoenzyme, an interaction that requires stimulation by Ca(2+) /CaM and nucleotide for its induction. This model makes several predictions that were verified here: Aggregation in vitro was reduced by the CaMKII inhibitors tatCN21 and tatCN19o (which block the T-site) as well as by KN93 (which is CaM-competitive). Notably, these and previously tested manipulations that block CaMKII activation all reduced aggregation, suggesting an alternative mechanism that instead requires kinase activity. However, experiments with the nucleotide-competitive broad-spectrum kinase inhibitors staurosporin and H7 showed that this is not the case. In vitro, staurosporine and H7 enabled CaMKII aggregation even in the absence of nucleotide. Within rat hippocampal neurons, an intra-body enabled live monitoring of endogenous CaMKII aggregation. This aggregation was blocked by tatCN21, but not by staurosporine, even though both effectively inhibit CaMKII activity. These results support the mechanistic model for CaMKII aggregation and show that kinase activity is not required. CaMKII aggregation is prevented by inhibiting kinase activity with mutations (red italics; shown previously) or inhibitors (red bold; shown here), indicating requirement of kinase activity. However, we show here that nucleotide-competitive inhibitors (green) allow CaMKII aggregation (including endogenous CaMKII within neurons), demonstrating that kinase activity is not required and supporting the current mechanistic model for CaMKII aggregation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isquemia/metabolismo , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Hipóxia Celular , Células Cultivadas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Transfecção
8.
J Neurosci ; 33(36): 14579-90, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005308

RESUMO

In response to NMDA receptor stimulation, CaMKIIα moves rapidly from a diffuse distribution within the shafts of neuronal dendrites to a clustered postsynaptic distribution. However, less is known about CaMKIIα localization and trafficking within neuronal somata. Here we use a novel recombinant probe capable of labeling endogenous CaMKIIα in living rat neurons to examine its localization and trafficking within the somata of cortical neurons. This probe, which was generated using an mRNA display selection, binds to endogenous CaMKIIα at high affinity and specificity following expression in rat cortical neurons in culture. In ∼45% of quiescent cortical neurons, labeled clusters of CaMKIIα 1-4 µm in diameter were present. Upon exposure to glutamate and glycine, CaMKIIα clusters disappeared in a Ca(2+)-dependent manner within seconds. Moreover, minutes after the removal of glutamate and glycine, the clusters returned to their original configuration. The clusters, which also appear in cortical neurons in sections taken from mouse brains, contain actin and disperse upon exposure to cytochalasin D, an actin depolymerizer. In conclusion, within the soma, CaMKII localizes and traffics in a manner that is distinct from its localization and trafficking within the dendrites.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Actinas/metabolismo , Animais , Células COS , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Citocalasina D/farmacologia , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Camundongos , Transporte Proteico/efeitos dos fármacos , Ratos
9.
J Neurochem ; 129(2): 213-220, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24147838

RESUMO

This review focuses on recent advances in the understanding of the organization and roles of actin filaments, and associated myosin motor proteins, in regulating the structure and function of the axon shaft. 'Patches' of actin filaments have emerged as a major type of actin filament organization in axons. In the distal axon, patches function as precursors to the formation of filopodia and branches. At the axon initial segment, patches locally capture membranous organelles and contribute to polarized trafficking. The trapping function of patches at the initial segment can be ascribed to interactions with myosin motors, and likely also applies to patches in the more distal axon. Finally, submembranous rings of actin filaments were recently described in axons, which form an actin-spectrin cytoskeleton, likely contributing to the maintenance of axon integrity. Continued investigation into the roles of axonal actin filaments and myosins will shed light on fundamental aspects of the development, adult function and the repair of axons in the nervous system.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Axônios/fisiologia , Miosinas/fisiologia , Animais , Axônios/ultraestrutura , Citoesqueleto/fisiologia , Humanos
10.
PLoS Biol ; 9(3): e1001021, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21390300

RESUMO

In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins.


Assuntos
Axônios/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Células COS , Channelrhodopsins , Chlorocebus aethiops , DNA Complementar/genética , Eletrofisiologia , Endocitose/fisiologia , Imuno-Histoquímica , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , Ratos
11.
bioRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163011

RESUMO

The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (∼3-6 Hz), high theta (∼6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through rhythmic gating of spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. Finally, we discuss how the peptide released by the VIP cell may alter the dynamics of plasticity to support the necessary fine timing.

12.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745471

RESUMO

Neural circuits, which constitute the substrate for brain processing, can be traced in the retrograde direction, from postsynaptic to presynaptic cells, using methods based on introducing modified rabies virus into genetically marked cell types. These methods have revolutionized the field of neuroscience. However, similarly reliable, transsynaptic, and non-toxic methods to trace circuits in the anterograde direction are not available. Here, we describe such a method based on an antibody-like protein selected against the extracellular N-terminus of the AMPA receptor subunit GluA1 (AMPA.FingR). ATLAS (Anterograde Transsynaptic Label based on Antibody-like Sensors) is engineered to release the AMPA.FingR and its payload, which can include Cre recombinase, from presynaptic sites into the synaptic cleft, after which it binds to GluA1, enters postsynaptic cells through endocytosis and subsequently carries its payload to the nucleus. Testing in vivo and in dissociated cultures shows that ATLAS mediates monosynaptic tracing from genetically determined cells that is strictly anterograde, synaptic, and non-toxic. Moreover, ATLAS shows activity dependence, which may make tracing active circuits that underlie specific behaviors possible.

13.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-38654827

RESUMO

Climbing fibers supervise cerebellar learning by providing signals to Purkinje cells (PCs) that instruct adaptive changes to mistakenly performed movements. Yet, climbing fibers are regularly active, even during well performed movements, suggesting that a mechanism dynamically regulates the ability of climbing fibers to induce corrective plasticity in response to motor errors. We found that molecular layer interneurons (MLIs), whose inhibition of PCs powerfully opposes climbing-fiber-mediated excitation, serve this function. Optogenetically suppressing the activity of floccular MLIs in mice during the vestibulo-ocular reflex (VOR) induces a learned increase in gain despite the absence of performance errors. Suppressing MLIs when the VOR is mistakenly underperformed reveled that their inhibitory output is necessary to orchestrate gain-increase learning by conditionally permitting climbing fibers to instruct plasticity induction during ipsiversive head turns. Ablation of an MLI circuit for PC disinhibition prevents gain-increase learning during VOR performance errors which was rescued by re-imposing PC disinhibition through MLI activity suppression. Our findings point to a decisive role for MLIs in gating climbing-fiber-mediated learning through their context-dependent inhibition of PCs.

14.
Neuron ; 109(1): 123-134.e4, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33096025

RESUMO

The excitatory synapse between hippocampal CA3 and CA1 pyramidal neurons exhibits long-term potentiation (LTP), a positive feedback process implicated in learning and memory in which postsynaptic depolarization strengthens synapses, promoting further depolarization. Without mechanisms for interrupting positive feedback, excitatory synapses could strengthen inexorably, corrupting memory storage. Here, we reveal a hidden form of inhibitory synaptic plasticity that prevents accumulation of excitatory LTP. We developed a knockin mouse that allows optical control of endogenous α5-subunit-containing γ-aminobutyric acid (GABA)A receptors (α5-GABARs). Induction of excitatory LTP relocates α5-GABARs, which are ordinarily extrasynaptic, to inhibitory synapses, quashing further NMDA receptor activation necessary for inducing more excitatory LTP. Blockade of α5-GABARs accelerates reversal learning, a behavioral test for cognitive flexibility dependent on repeated LTP. Hence, inhibitory synaptic plasticity occurs in parallel with excitatory synaptic plasticity, with the ensuing interruption of the positive feedback cycle of LTP serving as a possible critical early step in preserving memory.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de GABA-A/genética , Reversão de Aprendizagem/fisiologia , Sinapses/genética
15.
Sci Adv ; 7(48): eabf6935, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34818031

RESUMO

Schizophrenia is a polygenetic disorder whose clinical onset is often associated with behavioral stress. Here, we present a model of disease pathogenesis that builds on our observation that the synaptic immediate early gene NPTX2 is reduced in cerebrospinal fluid of individuals with recent onset schizophrenia. NPTX2 plays an essential role in maintaining excitatory homeostasis by adaptively enhancing circuit inhibition. NPTX2 function requires activity-dependent exocytosis and dynamic shedding at synapses and is coupled to circadian behavior. Behavior-linked NPTX2 trafficking is abolished by mutations that disrupt select activity-dependent plasticity mechanisms of excitatory neurons. Modeling NPTX2 loss of function results in failure of parvalbumin interneurons in their adaptive contribution to behavioral stress, and animals exhibit multiple neuropsychiatric domains. Because the genetics of schizophrenia encompasses diverse proteins that contribute to excitatory synapse plasticity, the identified vulnerability of NPTX2 function can provide a framework for assessing the impact of genetics and the intersection with stress.

16.
J Mol Biol ; 431(7): 1506-1517, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30844405

RESUMO

RNA editing is an important form of regulating gene expression and activity. APOBEC1 cytosine deaminase was initially characterized as pairing with a cofactor, A1CF, to form an active RNA editing complex that specifically targets APOB RNA in regulating lipid metabolism. Recent studies revealed that APOBEC1 may be involved in editing other potential RNA targets in a tissue-specific manner, and another protein, RBM47, appears to instead be the main cofactor of APOBEC1 for editing APOB RNA. In this report, by expressing APOBEC1 with either A1CF or RBM47 from human or mouse in an HEK293T cell line with no intrinsic APOBEC1/A1CF/RBM47 expression, we have compared direct RNA editing activity on several known cellular target RNAs. By using a sensitive cell-based fluorescence assay that enables comparative quantification of RNA editing through subcellular localization changes of eGFP, the two APOBEC1 cofactors, A1CF and RBM47, showed clear differences for editing activity on APOB and several other tested RNAs, and clear differences were observed when mouse versus human genes were tested. In addition, we have determined the minimal domain requirement of RBM47 needed for activity. These results provide useful functional characterization of RBM47 and direct biochemical evidence for the differential editing selectivity on a number of RNA targets.


Assuntos
Desaminase APOBEC-1/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Desaminase APOBEC-1/química , Desaminase APOBEC-1/genética , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
17.
Cell Rep ; 27(3): 658-665.e4, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995464

RESUMO

CaMKIIα is a central mediator of bidirectional synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). To study how CaMKIIα movement during plasticity is affected by soluble amyloid-ß peptide oligomers (Aß), we used FingR intrabodies to simultaneously image endogenous CaMKIIα and markers for excitatory versus inhibitory synapses in live neurons. Aß blocks LTP-stimulus-induced CaMKIIα accumulation at excitatory synapses. This block requires CaMKII activity, is dose and time dependent, and also occurs at synapses without detectable Aß; it is specific to LTP, as CaMKIIα accumulation at inhibitory synapses during LTD is not reduced. As CaMKII movement to excitatory synapses is required for normal LTP, its impairment can mechanistically explain Aß-induced impairment of LTP. CaMKII movement during LTP requires binding to the NMDA receptor, and Aß induces internalization of NMDA receptors. However, surprisingly, this internalization does not cause the block in CaMKIIα movement and is observed for extrasynaptic, but not synaptic, NMDA receptors.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Animais , Feminino , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Ionomicina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , N-Metilaspartato/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
18.
Nat Neurosci ; 6(3): 243-50, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12592409

RESUMO

The molecular mechanisms underlying polarized sorting of proteins in neurons are poorly understood. Here we report the identification of a 16 amino-acid, dileucine-containing motif that mediates dendritic targeting in a variety of neuronal cell types in slices of rat brain. This motif is present in the carboxy (C) termini of Shal-family K+ channels and is highly conserved from C. elegans to humans. It is necessary for dendritic targeting of potassium channel Kv4.2 and is sufficient to target the axonally localized channels Kv1.3 and Kv1.4 to the dendrites. It can also mediate dendritic targeting of a non-channel protein, CD8.


Assuntos
Dendritos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Células Cultivadas , Sequência Conservada , Endocitose , Técnicas In Vitro , Canal de Potássio Kv1.3 , Canal de Potássio Kv1.4 , Leucina , Dados de Sequência Molecular , Canais de Potássio/genética , Transporte Proteico/fisiologia , Células Piramidais/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Potássio Shal
19.
Cell Rep ; 21(10): 2696-2705, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212018

RESUMO

The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI.


Assuntos
Actinas/metabolismo , Neurônios/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Axônios/metabolismo , Sobrevivência Celular/fisiologia , Dendritos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Ratos
20.
Cytoskeleton (Hoboken) ; 73(9): 508-15, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26800506

RESUMO

This review focused on techniques that facilitated the visualization of protein trafficking. In the mid-1990s the cloning of GFP allowed fluorescently tagged proteins to be expressed in cells and then visualized in real time. This advance allowed a glimpse, for the first time, of the complex system within cells for distributing proteins. It quickly became apparent, however, that time-lapse sequences of exogenously expressed GFP-labeled proteins can be difficult to interpret. Reasons for this include the relatively low signal that comes from moving proteins and high background rates from stationary proteins and other sources, as well as the difficulty of identifying the origins and destinations of specific vesicular carriers. In this review a range of techniques that have overcome these issues to varying degrees was reviewed and the insights into protein trafficking that they have enabled were discussed. Concentration will be on neurons, as they are highly polarized and, thus, their trafficking systems tend to be accessible for study. © 2016 Wiley Periodicals, Inc.


Assuntos
Imagem Molecular/métodos , Proteínas Motores Moleculares/metabolismo , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imagem Molecular/tendências , Proteínas Motores Moleculares/genética , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA