Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902430

RESUMO

Sudden cardiac death (SCD) and arrhythmias represent a global public health problem, accounting for 15-20% of all deaths [...].


Assuntos
Arritmias Cardíacas , Morte Súbita Cardíaca , Humanos , Fatores de Risco , Canais Iônicos
2.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897638

RESUMO

In the atria, the rapid delayed rectifier channel (IKr) is a critical contributor to repolarization. In lipotoxic atria, increased activity of the serine/threonine mammalian target of rapamycin (mTOR) may remodel IKr and predispose patients to arrhythmias. To investigate whether mTOR produced defects in IKr channel function (protein expression and gating mechanisms), electrophysiology and biochemical assays in HEK293 cells stably expressing hERG1a/1b, and adult guinea pig atrial myocytes were used. Feeding with the saturated fatty acid palmitic acid high-fat diet (HFD) was used to induce lipotoxicity. Lipotoxicity-challenged HEK293 cells displayed an increased density of hERG1a/1b currents due to a targeted and significant increase in hERG1b protein expression. Furthermore, lipotoxicity significantly slowed the hERG1a/1b inactivation kinetics, while the activation and deactivation remained essentially unchanged. mTOR complex 1 (mTORC1) inhibition with rapamycin (RAP) reversed the increase in hERG1a/1b density and inactivation. Compared to lipotoxic myocytes, RAP-treated cells displayed action potential durations (APDs) and IKr densities similar to those of controls. HFD feeding triggered arrhythmogenic changes (increased the IKr density and shortened the APD) in the atria, but this was not observed in low-fat-fed controls. The data are the first to show the modulation of IKr by mTORC1, possibly through the remodeling of hERG1b, in lipotoxic atrial myocytes. These results offer mechanistic insights with implications for targeted therapeutic options for the therapy of acquired supraventricular arrhythmias in obesity and associated pathologies.


Assuntos
Arritmias Cardíacas , Miócitos Cardíacos , Potenciais de Ação , Animais , Arritmias Cardíacas/metabolismo , Cobaias , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miócitos Cardíacos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681909

RESUMO

In the heart, the delayed rectifier K current, IK, composed of the rapid (IKr) and slow (IKs) components contributes prominently to normal cardiac repolarization. In lipotoxicity, chronic elevation of pro-inflammatory cytokines may remodel IK, elevating the risk for ventricular arrythmias and sudden cardiac death. We investigated whether and how the pro-inflammatory interleukin-6 altered IK in the heart, using electrophysiology to evaluate changes in IK in adult guinea pig ventricular myocytes. We found that palmitic acid (a potent inducer of lipotoxicity), induced a rapid (~24 h) and significant increase in IL-6 in RAW264.7 cells. PA-diet fed guinea pigs displayed a severely prolonged QT interval when compared to low-fat diet fed controls. Exposure to isoproterenol induced torsade de pointes, and ventricular fibrillation in lipotoxic guinea pigs. Pre-exposure to IL-6 with the soluble IL-6 receptor produced a profound depression of IKr and IKs densities, prolonged action potential duration, and impaired mitochondrial ATP production. Only with the inhibition of IKr did a proarrhythmic phenotype of IKs depression emerge, manifested as a further prolongation of action potential duration and QT interval. Our data offer unique mechanistic insights with implications for pathological QT interval in patients and vulnerability to fatal arrhythmias.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/patologia , Interleucina-6/metabolismo , Síndrome do QT Longo/patologia , Macrófagos/metabolismo , Miócitos Cardíacos/patologia , Canais de Potássio/química , Animais , Arritmias Cardíacas/metabolismo , Cardiotoxicidade/fisiopatologia , Feminino , Cobaias , Ativação do Canal Iônico , Metabolismo dos Lipídeos , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo
4.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375447

RESUMO

Neurological disorders including depression, anxiety, post-traumatic stress disorder (PTSD), schizophrenia, autism and epilepsy are associated with an increased incidence of cardiovascular disorders and susceptibility to heart failure. The underlying molecular mechanisms that link neurological disorders and adverse cardiac function are poorly understood. Further, a lack of progress is likely due to a paucity of studies that investigate the relationship between neurological disorders and cardiac electrical activity in health and disease. Therefore, there is an important need to understand the spatiotemporal behavior of neurocardiac mechanisms. This can be advanced through the identification and validation of neurological and cardiac signaling pathways that may be adversely regulated. In this review we highlight how dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS) activity and inflammation, predispose to psychiatric disorders and cardiac dysfunction. Moreover, antipsychotic and antidepressant medications increase the risk for adverse cardiac events, mostly through the block of the human ether-a-go-go-related gene (hERG), which plays a critical role in cardiac repolarization. Therefore, understanding how neurological disorders lead to adverse cardiac ion channel remodeling is likely to have significant implications for the development of effective therapeutic interventions and helps improve the rational development of targeted therapeutics with significant clinical implications.


Assuntos
Antipsicóticos/efeitos adversos , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Canais Iônicos/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Antipsicóticos/uso terapêutico , Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Transtornos Mentais/complicações , Fatores de Risco
6.
Biochem Biophys Res Commun ; 519(3): 639-644, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31540694

RESUMO

OBJECTIVES: To develop an adult guinea pig model of lipotoxicity and explore the underlying mechanisms associated with changes in the expression of the delayed rectifier potassium current (IK). BACKGROUND: Lipotoxicity may represent a common link among metabolic disorders and a higher vulnerability to arrhythmias. METHODS: Whole-cell patch clamp, and palmitic acid (PA, a potent inducer of lipotoxicity), were used to assess mechanisms of short-term (∼50 days) high-fat diet (HFD) feeding on atrial electrophysiology in guinea pig hearts and myocytes. RESULTS: HFD fed guinea pigs were significantly heavier, displayed hypertriglyceridemia and hypercholesterolemia; but no signs of hyperglycemia or inflammation compared to low-fat diet fed controls. Increasing cardiac PA levels, resulted in shortened atrial action potential duration, and increased IK density. Inhibition of phosphoinositide 3-kinase (PI3K) prevented increases in IK due to PA. Acute (≥1hr) exposure of atrial myocytes to exogenous PA (1 mM) increased the density of the rapid delayed rectifier potassium current IKr, while it was decreased with the unsaturated oleic acid (OA, 1 mM). Serine-threonine protein phosphatase-2 (PP2A) inhibition with cantharidin reversed the effect of OA on IKr. CONCLUSION: Our data provide evidence of a novel lipotoxic guinea pig model with signs of vulnerability to arrhythmias. Inhibition of PA/PI3K/IK and/or activation of the OA/PP2A/IKr pathways may be therapeutically beneficial for lipotoxic arrhythmias.


Assuntos
Remodelamento Atrial/efeitos dos fármacos , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Ácido Palmítico/toxicidade , Animais , Dieta Hiperlipídica/efeitos adversos , Eletrofisiologia , Feminino , Cobaias , Injeções Intramusculares , Masculino , Ácido Palmítico/administração & dosagem
7.
Handb Exp Pharmacol ; 246: 161-184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29032483

RESUMO

In the heart, voltage-gated sodium (Nav) channel (Nav1.5) is defined by its pore-forming α-subunit and its auxiliary ß-subunits, both of which are important for its critical contribution to the initiation and maintenance of the cardiac action potential (AP) that underlie normal heart rhythm. The physiological relevance of Nav1.5 is further marked by the fact that inherited or congenital mutations in Nav1.5 channel gene SCN5A lead to altered functional expression (including expression, trafficking, and current density), and are generally manifested in the form of distinct cardiac arrhythmic events, epilepsy, neuropathic pain, migraine, and neuromuscular disorders. However, despite significant advances in defining the pathophysiology of Nav1.5, the molecular mechanisms that underlie its regulation and contribution to cardiac disorders are poorly understood. It is rapidly becoming evident that the functional expression (localization, trafficking and gating) of Nav1.5 may be under modulation by post-translational modifications that are associated with phosphorylation. We review here the molecular basis of cardiac Na channel regulation by kinases (PKA and PKC) and the resulting functional consequences. Specifically, we discuss: (1) recent literature on the structural, molecular, and functional properties of cardiac Nav1.5 channels; (2) how these properties may be altered by phosphorylation in disease states underlain by congenital mutations in Nav1.5 channel and/or subunits such as long QT and Brugada syndromes. Our expectation is that understanding the roles of these distinct and complex phosphorylation processes on the functional expression of Nav1.5 is likely to provide crucial mechanistic insights into Na channel associated arrhythmogenic events and will facilitate the development of novel therapeutic strategies.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Proteína Quinase C/fisiologia , Animais , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/química , Fosforilação
9.
Biochem Biophys Res Commun ; 482(4): 771-776, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27884747

RESUMO

Ca entry through atrial L-type Calcium channels (α1C and α1D) play an important role in muscular contraction, regulation of gene expression, and release of hormones including atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP). α1D Ca channel is exclusively expressed in atria, and has been shown to play a key role in the pathogenesis of atrial fibrillation. Recent data have shown that the small conductance calcium-activated potassium channel, SK4 is also atrial specific and also contributes prominently to the secretion of ANP and BNP. However, its functional role in the heart is still poorly understood. Here we used α1D gene heterozygous (α1D+/-) mice and HL-1 cells to determine the functional contribution of SK4 channels to α1D-dependent regulation of ANP and BNP secretion in response to endothelin (ET), and/or mechanical stretch. Immunoprecipitation with α1D specific antibody and western blotting with SK4 specific antibody on the immuno-precipitated protein complex showed a band at 50 KDa confirming the presence of SK4 in the complex and provided evidence of interaction between SK4 and α1D channels. Using RT-PCR, we observed a 2.9 fold decrease in expression of Cacna1d (gene encoding α1D) mRNA in atria from α1D+/-mice. The decrease in α1D mRNA corresponded with a 4.2 fold decrease in Kcnn4 (gene encoding SK4) mRNA from α1D+/- mice. These changes were paralleled with a 77% decrease in BNP serum levels from α1D+/- mice. When α1D was knocked down in HL-1cardiomyocytes using CRISPR/Cas9 technology, a 97% decrease in secreted BNP was observed even in cells subjected to stretch and endothelin. In conclusion, our data are first to show that α1D Ca and SK4 channels are coupled in the atria, and that deletion of α1D leads to decreased SK4 mRNA and BNP secretion providing evidence for a novel role of α1D in atrial endocrine function. Elucidating the regulatory factors that underlie the secretory function of atria will identify novel therapeutic targets for treatment and prevention of cardiac arrhythmias such as atrial fibrillation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Átrios do Coração/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Fibrilação Atrial/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Deleção de Genes , Regulação da Expressão Gênica , Heterozigoto , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo
10.
Biochem Biophys Res Commun ; 474(3): 554-559, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27130822

RESUMO

Obesity is associated with hyperlipidemia, electrical remodeling of the heart, and increased risk of supraventricular arrhythmias in both male and female patients. The delayed rectifier K(+) current (IK), is an important regulator of atrial repolarization. There is a paucity of studies on the functional role of IK in response to obesity. Here, we assessed the obesity-mediated functional modulation of IK in low-fat diet (LFD), and high-fat diet (HFD) fed adult guinea pigs. Guinea pigs were randomly divided into control and obese groups fed, ad libitum, with a LFD (10 kcal% fat) or a HFD (45 kcal% fat) respectively. Action potential duration (APD), and IK were studied in atrial myocytes and IKr and IKs in HEK293 cells using whole-cell patch clamp electrophysiology. HFD guinea pigs displayed a significant increase in body weight, total cholesterol and total triglycerides within 50 days. Atrial APD at 30% (APD30) and 90% (APD90) repolarization were shorter, while atrial IK density was significantly increased in HFD guinea pigs. Exposure to palmitic acid (PA) increased heterologously expressed IKr and IKs densities, while oleic acid (OA), severely reduced IKr and had no effect on IKs. The data are first to show that in obese guinea pigs abbreviated APD is due to increased IK density likely through elevations of PA. Our findings may have crucial implications for targeted treatment options for obesity-related arrhythmias.


Assuntos
Dieta Hiperlipídica/métodos , Átrios do Coração/fisiopatologia , Potenciais da Membrana , Miócitos Cardíacos , Obesidade/fisiopatologia , Potássio/metabolismo , Potenciais de Ação , Animais , Gorduras na Dieta/metabolismo , Feminino , Cobaias , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Ácido Palmítico/metabolismo
11.
Mol Cell ; 31(2): 255-65, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18657507

RESUMO

The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2's inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2's inhibition of cell death.


Assuntos
Apoptose , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Complexo CD3/metabolismo , Células COS , Sinalização do Cálcio/efeitos dos fármacos , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Ativação do Canal Iônico/efeitos dos fármacos , Células Jurkat , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(34): 14397-402, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706527

RESUMO

Although the presence of a BH4 domain distinguishes the antiapoptotic protein Bcl-2 from its proapoptotic relatives, little is known about its function. BH4 deletion converts Bcl-2 into a proapoptotic protein, whereas a TAT-BH4 fusion peptide inhibits apoptosis and improves survival in models of disease due to accelerated apoptosis. Thus, the BH4 domain has antiapoptotic activity independent of full-length Bcl-2. Here we report that the BH4 domain mediates interaction of Bcl-2 with the inositol 1,4,5-trisphosphate (IP3) receptor, an IP3-gated Ca(2+) channel on the endoplasmic reticulum (ER). BH4 peptide binds to the regulatory and coupling domain of the IP3 receptor and inhibits IP3-dependent channel opening, Ca(2+) release from the ER, and Ca(2+)-mediated apoptosis. A peptide inhibitor of Bcl-2-IP3 receptor interaction prevents these BH4-mediated effects. By inhibiting proapoptotic Ca(2+) signals at their point of origin, the Bcl-2 BH4 domain has the facility to block diverse pathways through which Ca(2+) induces apoptosis.


Assuntos
Apoptose/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Western Blotting , Complexo CD3/imunologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Imunoprecipitação , Receptores de Inositol 1,4,5-Trifosfato/genética , Células Jurkat , Microscopia de Fluorescência , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
13.
Front Physiol ; 11: 611860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519516

RESUMO

Circadian rhythms are involved in many physiological and pathological processes in different tissues, including the heart. Circadian rhythms play a critical role in adverse cardiac function with implications for heart failure and sudden cardiac death, highlighting a significant contribution of circadian mechanisms to normal sinus rhythm in health and disease. Cardiac arrhythmias are a leading cause of morbidity and mortality in patients with heart failure and likely cause ∼250,000 deaths annually in the United States alone; however, the molecular mechanisms are poorly understood. This suggests the need to improve our current understanding of the underlying molecular mechanisms that increase vulnerability to arrhythmias. Obesity and its associated pathologies, including diabetes, have emerged as dangerous disease conditions that predispose to adverse cardiac electrical remodeling leading to fatal arrhythmias. The increasing epidemic of obesity and diabetes suggests vulnerability to arrhythmias will remain high in patients. An important objective would be to identify novel and unappreciated cellular mechanisms or signaling pathways that modulate obesity and/or diabetes. In this review we discuss circadian rhythms control of metabolic and environmental cues, cardiac ion channels, and mechanisms that predispose to supraventricular and ventricular arrhythmias including hormonal signaling and the autonomic nervous system, and how understanding their functional interplay may help to inform the development and optimization of effective clinical and therapeutic interventions with implications for chronotherapy.

14.
Front Physiol ; 10: 1212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607952

RESUMO

Obesity mechanisms that make atrial tissue vulnerable to arrhythmia are poorly understood. Voltage-dependent potassium (IK , IKur , and IK1 ) and L-type calcium currents (ICa,L ) are electrically relevant and represent key substrates for modulation in obesity. We investigated whether electrical remodeling produced by high-fat diet (HFD) alone or in concert with acute atrial stimulation were different. Electrophysiology was used to assess atrial electrical function after short-term HFD-feeding in guinea pigs. HFD atria displayed spontaneous beats, increased IK (IKr + IKs ) and decreased ICa,L densities. Only with pacing did a reduction in IKur and increased IK1 phenotype emerge, leading to a further shortening of action potential duration. Computer modeling studies further indicate that the measured changes in potassium and calcium current densities contribute prominently to shortened atrial action potential duration in human heart. Our data are the first to show that multiple mechanisms (shortened action potential duration, early afterdepolarizations and increased incidence of spontaneous beats) may underlie initiation of supraventricular arrhythmias in obese guinea pig hearts. These results offer different mechanistic insights with implications for obese patients harboring supraventricular arrhythmias.

15.
Front Physiol ; 9: 1866, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666212

RESUMO

Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11-12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.

16.
PLoS One ; 13(12): e0208321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521586

RESUMO

Increased proinflammatory interleukin-6 (IL-6) levels are associated with acquired long QT-syndrome (LQTS) in patients with systemic inflammation, leading to higher risks for life-threatening polymorphic ventricular tachycardia such as Torsades de Pointes. However, the functional and molecular mechanisms of this association are not known. In most cases of acquired LQTS, the target ion channel is the human ether-á-go-go-related gene (hERG) encoding the rapid component of the delayed rectifier K current, IKr, which plays a critical role in cardiac repolarization. Here, we tested the hypothesis that IL-6 may cause QT prolongation by suppressing IKr. Electrophysiological and biochemical assays were used to assess the impact of IL-6 on the functional expression of IKr in HEK293 cells and adult guinea-pig ventricular myocytes (AGPVM). In HEK293 cells, IL-6 alone or in combination with the soluble IL-6 receptor (IL-6R), produced a significant depression of IKr peak and tail current densities. Block of IL-6R or Janus kinase (JAK) reversed the inhibitory effects of IL-6 on IKr. In AGPVM, IL-6 prolonged action potential duration (APD) which was further prolonged in the presence of IL-6R. Similar to heterologous cells, IL-6 reduced endogenous guinea pig ERG channel mRNA and protein expression. The data are first to demonstrate that IL-6 inhibition of IKr and the resulting prolongation of APD is mediated via IL-6R and JAK pathway activation and forms the basis for the observed clinical QT interval prolongation. These novel findings may guide the development of targeted anti-arrhythmic therapeutic interventions in patients with LQTS and inflammatory disorders.


Assuntos
Arritmias Cardíacas/metabolismo , Canal de Potássio ERG1/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/genética , Cobaias , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Receptores de Interleucina-6/metabolismo , Suínos
17.
Cell Calcium ; 41(1): 13-25, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16908061

RESUMO

In heart, the excitation-contraction coupling (ECC) mechanism changes during development. Primary cell culture has been used to study Ca(2+) signaling in newborn (NB) rat heart. In this work, the effects of cell culture on the action potential (AP) and ECC Ca(2+) signaling during development were investigated. Specifically, AP, Ca(2+) currents (I(Ca)), and ryanodine receptor (RyR) properties (i.e. density, distribution, and contribution to Ca(2+) transients and Ca(2+) sparks) were defined in cultured myocytes (CM) from 0-day-old NB rat at different times in culture (1-4 days). Compared with acutely dissociated myocytes (ADM) from NB of equivalent ages (1-4 days), CM showed lower RyR density (50% at 1 day, 25% at 4 days), but larger RyR contribution to the Ca(2+) transient (25% at 1 day, 57% at 4 days). Additionally, Ca(2+) sparks were larger, longer, wider, and more frequent in CM than in ADM. RyR cellular distribution also showed different arrangement. While in CM, RyRs were located peripherally, in ADM of equivalent ages a sarcomeric arrangement was predominant. Finally, CM showed a two-fold increase in sarcolemmal Ca(2+) entry during the AP. These results indicated that primary culture is a feasible model to study Ca(2+) signaling in heart; however, it does not precisely reproduce what occurs in ECC during development.


Assuntos
Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Cinética , Contração Miocárdica , Miócitos Cardíacos/citologia , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
18.
Front Physiol ; 8: 431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680407

RESUMO

Obesity and its associated metabolic dysregulation leading to metabolic syndrome is an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese leading to enhanced risk of cardiovascular disease (CVD) incidence and mortality. Obesity predisposes to atrial fibrillation, ventricular, and supraventricular arrhythmias; conditions that are underlain by dysfunction in electrical activity of the heart. To date, current therapeutic options for cardiomyopathy of obesity are limited, suggesting that there is considerable room for development of therapeutic interventions with novel mechanisms of action that will help normalize rhythm in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels/Ca handling proteins remain incompletely understood. Obesity is marked by accumulation of adipose tissue associated with a variety of adverse adaptations including dyslipidemia (or abnormal levels of serum free fatty acids), increased secretion of pro-inflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, that will cause electrical remodeling and thus predispose to arrhythmias. Further, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which are marked by distinct signaling mechanisms. Thus, there may also be functional differences in the outcome of regional distribution of fat deposits on ion channel/Ca handling proteins expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge about the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. The objective of this article is to review cardiac ion channel/Ca handling proteins remodeling that predispose to arrhythmias. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact.

19.
Heart ; 103(22): 1821-1829, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28490617

RESUMO

OBJECTIVE: Increasing evidence indicates systemic inflammation as a new potential cause of acquired long QT syndrome (LQTS), via cytokine-mediated changes in cardiomyocyte ion channels. Torsade de pointes (TdP) is a life-threatening polymorphic ventricular tachycardia occurring in patients with LQTS, usually when multiple QT-prolonging factors are simultaneously present. Since classical risk factors cannot fully explain TdP events in a number of patients, we hypothesised that systemic inflammation may represent a currently overlooked risk factor contributing to TdP development in the general population. METHODS: Forty consecutive patients who experienced TdP (TdP cohort) were consecutively enrolled and circulating levels of C-reactive protein (CRP) and proinflammatory cytokines (interleukin-6 (IL-6), tumour necrosis factor alpha (TNFα), interleukin-1 (IL-1)) were compared with patients with active rheumatoid arthritis (RA), comorbidity or healthy controls. An additional 46 patients with different inflammatory conditions (acute infections, n=31; immune-mediated diseases, n=12; others, n=3) and elevated CRP (inflammatory cohort) were prospectively enrolled, and corrected QT (QTc) and cytokine levels were measured during active disease and after a CRP decrease of >75% subsequent to therapy. RESULTS: In the TdP cohort, 80% of patients showed elevated CRP levels (median: ~3 mg/dL), with a definite inflammatory disease identifiable in 18/40 cases (acute infections, n=12; immune-mediated diseases, n=5; others, n=1). In these subjects, IL-6, but not TNFα and IL-1, was ~15-20 times higher than in controls, and comparable to RA patients. In the inflammatory cohort, where QTc prolongation was common (mean values: 456.6±30.9 ms), CRP reduction was associated with IL-6 level decrease and significant QTc shortening (-22.3 ms). CONCLUSION: The data are first to show that systemic inflammation via elevated IL-6 levels may represent a novel QT-prolonging risk factor contributing to TdP occurrence in the presence of other classical risk factors. If confirmed, this could open new avenues in antiarrhythmic therapy.


Assuntos
Mediadores da Inflamação/sangue , Inflamação/complicações , Interleucina-6/sangue , Torsades de Pointes/etiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Proteína C-Reativa/análise , Estudos de Casos e Controles , Eletrocardiografia , Feminino , Humanos , Inflamação/sangue , Inflamação/diagnóstico , Interleucina-1/sangue , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco , Torsades de Pointes/sangue , Torsades de Pointes/diagnóstico , Torsades de Pointes/fisiopatologia , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA