Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 599(7886): 679-683, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759319

RESUMO

Inactive state-selective KRAS(G12C) inhibitors1-8 demonstrate a 30-40% response rate and result in approximately 6-month median progression-free survival in patients with lung cancer9. The genetic basis for resistance to these first-in-class mutant GTPase inhibitors remains under investigation. Here we evaluated matched pre-treatment and post-treatment specimens from 43 patients treated with the KRAS(G12C) inhibitor sotorasib. Multiple treatment-emergent alterations were observed across 27 patients, including alterations in KRAS, NRAS, BRAF, EGFR, FGFR2, MYC and other genes. In preclinical patient-derived xenograft and cell line models, resistance to KRAS(G12C) inhibition was associated with low allele frequency hotspot mutations in KRAS(G12V or G13D), NRAS(Q61K or G13R), MRAS(Q71R) and/or BRAF(G596R), mirroring observations in patients. Single-cell sequencing in an isogenic lineage identified secondary RAS and/or BRAF mutations in the same cells as KRAS(G12C), where they bypassed inhibition without affecting target inactivation. Genetic or pharmacological targeting of ERK signalling intermediates enhanced the antiproliferative effect of G12C inhibitor treatment in models with acquired RAS or BRAF mutations. Our study thus suggests a heterogenous pattern of resistance with multiple subclonal events emerging during G12C inhibitor treatment. A subset of patients in our cohort acquired oncogenic KRAS, NRAS or BRAF mutations, and resistance in this setting may be delayed by co-targeting of ERK signalling intermediates. These findings merit broader evaluation in prospective clinical trials.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Acetonitrilas/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Cell ; 41(11): 1963-1971.e3, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37890492

RESUMO

Cancer genomes from patients with African (AFR) ancestry have been poorly studied in clinical research. We leverage two large genomic cohorts to investigate the relationship between genomic alterations and AFR ancestry in six common cancers. Cross-cancer type associations, such as an enrichment of MYC amplification with AFR ancestry in lung, breast, and prostate cancers, and depletion of BRAF alterations are observed in colorectal and pancreatic cancers. There are differences in actionable alterations, such as depletion of KRAS G12C and EGFR L858R, and enrichment of ROS1 fusion with AFR ancestry in lung cancers. Interestingly, in lung cancer, KRAS mutations are less common in both smokers and non-smokers with AFR ancestry, whereas the association of TP53 mutations with AFR ancestry is only seen in smokers, suggesting an ancestry-environment interaction that modifies driver rates. Our study highlights the need to increase representation of patients with AFR ancestry in drug development and biomarker discovery.


Assuntos
Neoplasias Pulmonares , Proteínas Tirosina Quinases , Masculino , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
3.
JCO Precis Oncol ; 7: e2300137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738546

RESUMO

PURPOSE: To evaluate rates of germline pathogenic/likely pathogenic variants (PVs) and genetic counseling by ancestry in patients with epithelial ovarian cancer (EOC). METHODS: Patients with pathologically confirmed EOC who underwent clinical tumor-normal sequencing from January 1, 2015, to December 31, 2020, inclusive of germline analysis of ≥76 genes were included. Patients with newly identified PVs were referred for Clinical Genetics Service (CGS) counseling. Ancestry groups were defined using self-reported race/ethnicity and Ashkenazi Jewish (AJ) heritage. Genetic ancestry was inferred computationally using validated algorithms. Logistic regression models were built. RESULTS: Of 1,266 patients, self-reported ancestry (AJ, 17%; Asian, 10%; Black/African American, 5.4%; Hispanic, 6.2%; non-Hispanic White, 57%; other, 0.16%; unknown, 4.0%) correlated with genetic ancestry (AJ ancestry, 18%; admixed, 10%; African, 4%; East Asian [EAS], 6%; European, 56%; Native American, 0.2%; South Asian [SAS], 4%; unknown, 2%). Germline PVs were observed in 313 (25%) patients, including 195 (15%) with PVs in EOC-associated genes. Those with PVs were younger at diagnosis (59 v 62 years; P < .001) and more likely to have high-grade serous ovarian cancer (83% v 72%; P = .009). PV prevalence varied between ancestry groups (P < .001), with highest rates in the AJ (39.9%) and Asian (26.5%) groups and similar rates (>10%) across other ancestry groups. Use of genetic ancestry demonstrated similar findings and further characterized high rates of PV in EAS/SAS groups. Younger age, high-grade serous histology, and self-reported AJ or Asian ancestry were associated with PV in an EOC-associated gene. Rates of CGS counseling for newly identified PVs were high (80%) across ancestry groups. CONCLUSION: Rates of PV, particularly in EOC-associated genes, were high regardless of ancestry, with similar rates of counseling between groups, emphasizing the importance of universal genetic testing in all patients with EOC.


Assuntos
Aconselhamento Genético , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/genética , Testes Genéticos , Células Germinativas , Neoplasias Ovarianas/genética
4.
Cancer Cell ; 40(10): 1161-1172.e5, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36179682

RESUMO

The immune checkpoint inhibitor (ICI) pembrolizumab is US FDA approved for treatment of solid tumors with high tumor mutational burden (TMB-high; ≥10 variants/Mb). However, the extent to which TMB-high generalizes as an accurate biomarker in diverse patient populations is largely unknown. Using two clinical cohorts, we investigated the interplay between genetic ancestry, TMB, and tumor-only versus tumor-normal paired sequencing in solid tumors. TMB estimates from tumor-only panels substantially overclassified individuals into the clinically important TMB-high group due to germline contamination, and this bias was particularly pronounced in patients with Asian/African ancestry. Among patients with non-small cell lung cancer treated with ICIs, those misclassified as TMB-high from tumor-only panels did not associate with improved outcomes. TMB-high was significantly associated with improved outcomes only in European ancestries and merits validation in non-European ancestry populations. Ancestry-aware tumor-only TMB calibration and ancestry-diverse biomarker studies are critical to ensure that existing disparities are not exacerbated in precision medicine.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/genética , Mutação , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA