Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008170

RESUMO

Alzheimer's disease (AD) is a significant form of dementia. Embelin (EMB) is a natural compound with varied actions that could help prevent AD pathology. Herein, we have investigated the neuroprotective potential of EMB against Aß1-42-induced neurotoxicity in rats. In this experiment, Alzheimer-like dementia was induced in rats by infusing Aß1-42 oligomers directly into the brain's ventricles. Subsequently, the Aß1-42-intoxicated rats received treatment with varying doses of EMB (2.5, 5, and 10 mg/kg, administered intraperitoneally) over 2 weeks. The spatial and non-spatial memory of animals was assessed at different time intervals, and various biochemical, neurochemical, and neuroinflammatory parameters in the hippocampal brain tissue of the rats were analyzed. Infusion of Aß1-42 in rat brain caused cognitive impairment and was accompanied by increased acetylcholinesterase activity, oxidative stress, and elevated levels of pro-inflammatory cytokines (such as TNF-α, IL-1ß, and IL-6) in the hippocampal tissue. Moreover, a significant decline in the levels of monoamines and an imbalance of GABA and glutamate levels were also observed. EMB treatment significantly mitigated Aß1-42-induced cognitive deficit and other biochemical changes, including Aß levels. The EMB-treated rats showed improved learning and consolidation of memory. EMB also attenuated Aß-induced oxidative stress and neuroinflammation and restored the levels of monoamines and the balance between GABA and glutamate. The observed cognitive benefits following EMB treatment in Aß1-42-infused rats may be attributed to its antioxidant and anti-inflammatory properties and ability to restore hippocampal neurochemistry and Aß levels. The above findings indicate the therapeutic potential of EMB in neurodegenerative pathologies associated with cognitive decline, such as Alzheimer's disease.

2.
Curr Pharm Des ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616755

RESUMO

Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.

3.
Curr Res Neurobiol ; 6: 100122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616958

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that affects the neurons in the hippocampus, resulting in cognitive and memory impairment. The most prominent clinical characteristics of AD are the production of amyloid-beta (Aß) plaques, neurofibrillary tangles, and neuroinflammation in neurons. It has been proven that embelin (Emb) possesses antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, we assessed the therapeutic potential of Emb in Benzo [α]pyrene (BaP)-induced cognitive impairment in experimental mice. BaP (5 mg/kg, i. p) was given to mice daily for 28 days, and Emb (2.5, 5, and 10 mg/kg, i. p) was given from 14 to 28 days of a protocol. In addition, locomotor activity was evaluated using open-field and spatial working, and non-spatial memory was evaluated using novel object recognition tasks (NORT), Morris water maze (MWM), and Y- maze. At the end of the study, the animal tissue homogenate was used to check biochemicals, neuroinflammation, and neurotransmitter changes. BaP-treated mice showed a significant decline in locomotor activity, learning and memory deficits and augmented oxidative stress (lipid peroxidation, nitrite, and GSH). Further, BaP promoted the release of inflammatory tissue markers, decreased acetylcholine, dopamine, GABA, serotonin, and norepinephrine, and increased glutamate concentration. However, treatment with Emb at dose-dependently prevented biochemical changes, improved antioxidant levels, reduced neuroinflammation, restored neurotransmitter concentration, and inhibited the NF-κB pathway. The current study's finding suggested that Emb improved cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms and inhibition of acetylcholinesterase (AChE) enzyme activities and Aß-42 accumulation.

4.
Behav Pharmacol ; 24(7): 580-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26057771

RESUMO

Upregulation in calcineurin (CaN) signaling has been implicated in various neurodegenerative disorders. In the present study, we have investigated the effect of FK506--a CaN inhibitor--on streptozotocin (STZ)-induced experimental dementia of the Alzheimer's type in rats. STZ was administered intracerebroventricularly to induce a cognitive deficit and oxidative stress. Nonimmunosuppressive doses (0.5 and 1 mg/kg postoperatively) of FK506 (tacrolimus) were administered for 21 day in STZ-treated rats. Cognitive functions were assessed using the Morris water maze and passive avoidance tasks. Malondialdehyde and nitrite glutathione levels, as well as acetylcholinesterase activity, were determined to evaluate oxidative stress and cholinergic functions. Lactate dehydrogenase levels were estimated and histological analysis of the dentate gyrus and the CA1 region of the hippocampus was carried out to identify degenerative changes. STZ produced significant deterioration of cognitive functions, oxidative stress, and degenerative changes in the cortical and hippocampal brain regions. FK506 dose-dependently attenuated STZ-induced cognitive deficits, oxidative stress, and degenerative changes in the cortex and hippocampus. These results suggest a potential role of CaN signaling in degenerative processes, and that inhibition of CaN may be useful in the treatment of neurodegenerative disorders such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores de Calcineurina/farmacologia , Demência/tratamento farmacológico , Tacrolimo/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Inibidores de Calcineurina/administração & dosagem , Cognição/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Estreptozocina/toxicidade , Tacrolimo/administração & dosagem
5.
Mol Neurobiol ; 57(9): 3991, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621278

RESUMO

The original version of this article unfortunately missed to include the other affiliation of the first author Rimpi Arora as listed below.

6.
Mol Neurobiol ; 54(9): 6670-6680, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744573

RESUMO

Embelin, the main active constituent of Embelia ribes, has been reported to possess various pharmacological actions, including anti-inflammatory, antioxidant, anticonvulsant, and neuroprotective. The present study was designed to investigate neuroprotective mechanisms and therapeutic potential of embelin against intracerebroventricular streptozotocin (ICV-STZ)-induced experimental sporadic dementia in rats. STZ was infused bilaterally at the dose of (3 mg/kg/1 µl/1 min) ICV on day first and third. Spatial and non-spatial memory was evaluated using Morris water maze and object recognition task in rats. Embelin (2.5, 5, and 10 mg/kg, i.p.) was administrated for 14 days from seventh day onwards after first ICV-STZ infusion in rats. On day 22, rats were sacrificed and hippocampal brain regions were used to identify biochemical, neurochemical, and neuroinflammatory alterations. STZ-infused rats showed significant learning and memory deficit which was associated with an increase in oxidative stress (lipid peroxidation and nitrite), compromised antioxidant defense (reduced glutathione), neurotransmitter alterations (AChE, dopamine, noradrenaline, 5-hydroxytryptamine, gama amino butyric acid, and glutamate), and elevation in neuroinflammatory cytokine (IL-1 ß, IL-6, and TNF-α) levels. Embelin dose dependently attenuated STZ-induced cognitive deficit and biochemical alterations and restored hippocampal neurochemical levels. The observed protective effect might be attributed to the antioxidant and anti-inflammatory potential of embelin and its ability to restore hippocampal neurochemistry. Thus, the outcomes of the current study suggest therapeutic potential of embelin in cognitive disorders such as sporadic Alzheimer's disease (SAD).


Assuntos
Benzoquinonas/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Estreptozocina/toxicidade , Animais , Benzoquinonas/farmacologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Estreptozocina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA