RESUMO
Immune checkpoint inhibitors (ICIs) targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway have transformed urothelial cancer (UC) therapy. The correlation between PD-L1 expression and ICI effectiveness is uncertain, leaving the role of PD-L1 as a predictive marker for ICI efficacy unclear. Among several ways to enhance the efficacy of ICI, trials are exploring combining ICIs with serine/threonine-protein kinase mTOR (mTOR) inhibitors in different tumor types. The potential interaction between mTOR inhibitors and PD-L1 expression in UC has not been well characterized. In our study, we investigated how phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway inhibitors (TAK-228, everolimus and TAK-117) affect PD-L1 expression and function in preclinical bladder cancer cell models. TAK-228 increased cell surface levels of glycosylated PD-L1 in all but one of the seven cell lines, regardless of baseline levels. TAK-228 promoted the secretion of epidermal growth factor (EGF) and interferon-ß (IFNß), both linked to PD-L1 protein induction. Blocking EGF and IFNß receptors reversed the TAK-228-induced PD-L1 increase. Additionally, TAK-228 enhanced IFN-γ-induced PD-L1 expression and intracellular HLA-I levels in some cells. TAK-228-treated bladder cancer cells exhibited resistance to the cytotoxic effects of peripheral blood mononuclear cells (PBMCs) and cluster of differentiation 8 (CD8)+ T cells. The addition of an anti-PD-L1 antibody diminished this resistance in T24 cells. Increased expression of PD-L1 under TAK-228 exposure was confirmed in patient-derived explants (PDEs) treated ex vivo. These preclinical findings suggest that mTOR inhibition with TAK-228 can increase PD-L1 levels, potentially impacting the specific immune response against UC cells. This highlights the rationale for exploring the combination of mTOR inhibitors with ICIs in patients with advanced UC.
RESUMO
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS: TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS: Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS: In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
RESUMO
In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and -2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing. IMPLICATIONS: Inhibition of mTOR increases the antitumor activity of T-DM1, supporting that the combination of mTOR inhibitors and antibody-drug conjugates warrants clinical evaluation in patients with HER2-positive breast cancer.
Assuntos
Neoplasias da Mama , Imunoconjugados , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Everolimo/farmacologia , Feminino , Humanos , Imunoconjugados/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Receptor ErbB-2/metabolismo , Serina-Treonina Quinases TOR , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.
Assuntos
Glioblastoma , Glioma , Carcinogênese , Fusão Gênica , Glioblastoma/patologia , Glioma/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Fusão Oncogênica/genética , RNA-SeqRESUMO
PURPOSE: To characterize expression of neuregulin-1 (NRG1), an HER3 ligand, in HER2-positive breast cancer and its relation with the efficacy of trastuzumab with or without pertuzumab. EXPERIMENTAL DESIGN: Characterization of NRG1 expression in tumor cell lines, in tumor specimens, and in cancer-associated fibroblasts (CAFs). Patient-derived CAFs were used to investigate NRG1 impact on the activity of trastuzumab with or without pertuzumab in HER2-positive breast cancer cells. The relationship between NRG1 expression and pathologic response to anti-HER2-based neoadjuvant therapy was assessed in a retrospective patient cohort and in the NeoSphere trial. RESULTS: NRG1 was expressed in HER2-positive breast cancer-derived fibroblasts at significantly higher levels than in cancer cells. NRG1 and the conditioned media (CM) from CAFs phosphorylated HER3 and AKT in cancer cells and mediated trastuzumab resistance. Stable genetic depletion of NRG1 from CAFs overcame trastuzumab resistance. Pertuzumab effectively suppressed trastuzumab resistance mediated by either NRG1 or CAF's CM. NRG1 engaged an epithelial-to-mesenchymal transition that was prevented by trastuzumab and pertuzumab. In clinical samples, stromal and/or tumor cell expression of NRG1 determined by immunohistochemistry was uncommon (13.2%) yet significantly linked with residual disease following trastuzumab-based neoadjuvant therapy. In the NeoSphere trial, the magnitude of the difference of pathologic complete response rates favoring the pertuzumab arm was higher in the NRG1-high group. CONCLUSIONS: CAF-derived NRG1 mediates trastuzumab resistance through HER3/AKT, which might be reverted by pertuzumab. In patients with HER2-positive breast cancer, high expression of NRG1 was associated to poor response to trastuzumab, but not in combination with pertuzumab.