Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hum Mol Genet ; 30(13): 1218-1229, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33891002

RESUMO

Cone dystrophies are a rare subgroup of inherited retinal dystrophies and hallmarked by color vision defects, low or decreasing visual acuity and central vision loss, nystagmus and photophobia. Applying genome-wide linkage analysis and array comparative genome hybridization, we identified a locus for autosomal dominant cone dystrophy on chromosome 16q12 in four independent multigeneration families. The locus is defined by duplications of variable size with a smallest region of overlap of 608 kb affecting the IRXB gene cluster and encompasses the genes IRX5 and IRX6. IRX5 and IRX6 belong to the Iroquois (Iro) protein family of homeodomain-containing transcription factors involved in patterning and regionalization of embryonic tissue in vertebrates, including the eye and the retina. All patients presented with a unique progressive cone dystrophy phenotype hallmarked by early tritanopic color vision defects. We propose that the disease underlies a misregulation of the IRXB gene cluster on chromosome 16q12 and demonstrate that overexpression of Irx5a and Irx6a, the two orthologous genes in zebrafish, results in visual impairment in 5-day-old zebrafish larvae.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Defeitos da Visão Cromática/genética , Distrofia de Cones/genética , Proteínas de Homeodomínio/genética , Família Multigênica , Fatores de Transcrição/genética , Animais , Hibridização Genômica Comparativa/métodos , Saúde da Família , Feminino , Regulação da Expressão Gênica , Genes Dominantes/genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNA/métodos , Peixe-Zebra/genética
2.
PLoS Biol ; 15(7): e2002702, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28719603

RESUMO

Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called 'FlyPi'. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to 'shop around'. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi's capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi's utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.


Assuntos
Microscopia de Fluorescência/instrumentação , Optogenética/instrumentação , Impressão Tridimensional , Animais , Comportamento Animal , Caenorhabditis elegans/fisiologia , Drosophila/fisiologia , Microscopia de Fluorescência/economia , Optogenética/economia , Temperatura , Interface Usuário-Computador , Peixe-Zebra/fisiologia
3.
BMC Biol ; 17(1): 110, 2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884959

RESUMO

BACKGROUND: The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. RESULTS: Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. CONCLUSIONS: We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.


Assuntos
Movimentos Oculares/fisiologia , Rombencéfalo/fisiologia , Visão Binocular , Peixe-Zebra/fisiologia , Animais
4.
BMC Biol ; 17(1): 29, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925897

RESUMO

BACKGROUND: The processing of optic flow in the pretectum/accessory optic system allows animals to stabilize retinal images by executing compensatory optokinetic and optomotor behavior. The success of this behavior depends on the integration of information from both eyes to unequivocally identify all possible translational or rotational directions of motion. However, it is still unknown whether the precise direction of ego-motion is already identified in the zebrafish pretectum or later in downstream premotor areas. RESULTS: Here, we show that the zebrafish pretectum and tectum each contain four populations of motion-sensitive direction-selective (DS) neurons, with each population encoding a different preferred direction upon monocular stimulation. In contrast, binocular stimulation revealed the existence of pretectal and tectal neurons that are specifically tuned to only one of the many possible combinations of monocular motion, suggesting that further downstream sensory processing might not be needed to instruct appropriate optokinetic and optomotor behavior. CONCLUSION: Our results suggest that local, task-specific pretectal circuits process DS retinal inputs and carry out the binocular sensory computations necessary for optokinetic and optomotor behavior.


Assuntos
Fluxo Óptico/fisiologia , Área Pré-Tectal/fisiologia , Colículos Superiores/fisiologia , Peixe-Zebra/fisiologia , Animais , Neurônios/fisiologia , Vias Visuais/fisiologia
5.
J Neurosci ; 35(20): 7903-20, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995475

RESUMO

The accumulation and storage of information over time, temporal integration, is key to numerous behaviors. Many oculomotor tasks depend on integration of eye-velocity signals to eye-position commands, a transformation achieved by a hindbrain cell group termed the velocity-to-position neural integrator (VPNI). Although the VPNI's coding properties have been well characterized, its mechanism of function remains poorly understood because few links exist between neuronal activity, structure, and genotypic identity. To fill this gap, we used calcium imaging and single-cell electroporation during oculomotor behaviors to map VPNI neural activity in zebrafish onto a hindbrain scaffold consisting of alternating excitatory and inhibitory parasagittal stripes. Three distinct classes of VPNI cells were identified. One glutamatergic class was medially located along a stripe associated with the alx transcription factor; these cells had ipsilateral projections terminating near abducens motoneurons and collateralized extensively within the ipsilateral VPNI in a manner consistent with integration through recurrent excitation. A second glutamatergic class was more laterally located along a stripe associated with transcription factor dbx1b; these glutamatergic cells had contralateral projections collateralizing near abducens motoneurons, consistent with a role in disconjugate eye movements. A third class, immunohistochemically suggested to be GABAergic, was located primarily in the dbx1b stripe and also had contralateral projections terminating near abducens motoneurons; these cells collateralized extensively in the dendritic field of contralateral VPNI neurons, consistent with a role in coordinating activity between functionally opposing populations. This mapping between VPNI activity, structure, and genotype may provide a blueprint for understanding the mechanisms governing temporal integration.


Assuntos
Movimentos Oculares , Neurônios GABAérgicos/fisiologia , Genótipo , Neurônios Motores/fisiologia , Rombencéfalo/fisiologia , Animais , Proteínas do Olho/metabolismo , Feminino , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Neurônios Motores/classificação , Neurônios Motores/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
Sci Rep ; 13(1): 12028, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491571

RESUMO

Animal sensory systems are tightly adapted to the demands of their environment. In the visual domain, research has shown that many species have circuits and systems that exploit statistical regularities in natural visual signals. The zebrafish is a popular model animal in visual neuroscience, but relatively little quantitative data is available about the visual properties of the aquatic habitats where zebrafish reside, as compared to terrestrial environments. Improving our understanding of the visual demands of the aquatic habitats of zebrafish can enhance the insights about sensory neuroscience yielded by this model system. We analyzed a video dataset of zebrafish habitats captured by a stationary camera and compared this dataset to videos of terrestrial scenes in the same geographic area. Our analysis of the spatiotemporal structure in these videos suggests that zebrafish habitats are characterized by low visual contrast and strong motion when compared to terrestrial environments. Similar to terrestrial environments, zebrafish habitats tended to be dominated by dark contrasts, particularly in the lower visual field. We discuss how these properties of the visual environment can inform the study of zebrafish visual behavior and neural processing and, by extension, can inform our understanding of the vertebrate brain.


Assuntos
Percepção Visual , Peixe-Zebra , Animais , Campos Visuais , Ecossistema , Encéfalo
7.
Proc Natl Acad Sci U S A ; 106(42): 17968-73, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19805086

RESUMO

Expression of halorhodopsin (NpHR), a light-driven microbial chloride pump, enables optical control of membrane potential and reversible silencing of targeted neurons. We generated transgenic zebrafish expressing enhanced NpHR under control of the Gal4/UAS system. Electrophysiological recordings showed that eNpHR stimulation effectively suppressed spiking of single neurons in vivo. Applying light through thin optic fibers positioned above the head of a semi-restrained zebrafish larva enabled us to target groups of neurons and to simultaneously test the effect of their silencing on behavior. The photostimulated volume of the zebrafish brain could be marked by subsequent photoconversion of co-expressed Kaede or Dendra. These techniques were used to localize swim command circuitry to a small hindbrain region, just rostral to the commissura infima Halleri. The kinetics of the hindbrain-generated swim command was investigated by combined and separate photo-activation of NpHR and Channelrhodopsin-2 (ChR2), a light-gated cation channel, in the same neurons. Together this "optogenetic toolkit" allows loss-of-function and gain-of-function analyses of neural circuitry at high spatial and temporal resolution in a behaving vertebrate.


Assuntos
Comportamento Animal/fisiologia , Halorrodopsinas/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Fenômenos Eletrofisiológicos , Halorrodopsinas/efeitos da radiação , Luz , Locomoção/fisiologia , Locomoção/efeitos da radiação , Proteínas Luminescentes/genética , Fibras Ópticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/efeitos da radiação , Rombencéfalo/fisiologia , Rombencéfalo/efeitos da radiação , Natação/fisiologia
8.
Curr Biol ; 32(11): 2505-2516.e8, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550724

RESUMO

The perception of optic flow is essential for any visually guided behavior of a moving animal. To mechanistically predict behavior and understand the emergence of self-motion perception in vertebrate brains, it is essential to systematically characterize the motion receptive fields (RFs) of optic-flow-processing neurons. Here, we present the fine-scale RFs of thousands of motion-sensitive neurons studied in the diencephalon and the midbrain of zebrafish. We found neurons that serve as linear filters and robustly encode directional and speed information of translation-induced optic flow. These neurons are topographically arranged in pretectum according to translation direction. The unambiguous encoding of translation enables the decomposition of translational and rotational self-motion information from mixed optic flow. In behavioral experiments, we successfully demonstrated the predicted decomposition in the optokinetic and optomotor responses. Together, our study reveals the algorithm and the neural implementation for self-motion estimation in a vertebrate visual system.


Assuntos
Percepção de Movimento , Fluxo Óptico , Área Pré-Tectal , Animais , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Área Pré-Tectal/fisiologia , Peixe-Zebra/fisiologia
9.
Front Vet Sci ; 9: 864573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419446

RESUMO

Tricaine, or MS-222, is the most commonly used chemical anesthetic in zebrafish research. It is thought to act via blocking voltage-gated sodium channels, though its mechanism of action, particularly at the neuronal level, is not yet fully understood. Here, we first characterized the effects of tricaine on both body balance and touch responses in freely swimming animals, before determining its effect on the neural activity underlying the optokinetic response at the level of motion perception, sensorimotor signaling and the generation of behavior in immobilized animals. We found that the standard dose for larvae (168 mg/L) induced loss of righting reflex within 30 seconds, which then recovered within 3 minutes. Optokinetic behavior recovered within 15 minutes. Calcium imaging showed that tricaine interferes with optokinetic behavior by interruption of the signals between the pretectum and hindbrain. The motion sensitivity indices of identified sensory neurons were unchanged in larvae exposed to tricaine, though fewer such neurons were detected, leaving a small population of active sensory neurons. We then compared tricaine with gradual cooling, a potential non-chemical alternative method of anesthesia. While neuronal tuning appeared to be affected in a similar manner during gradual cooling, gradual cooling induced a surge in calcium levels in both the pretectum and hindbrain. This calcium surge, alongside a drop in heartrate, is potentially associated with harmful changes in physiology and suggests that tricaine is a better anesthetic agent than gradual cooling for zebrafish laboratory research.

10.
Curr Biol ; 32(23): 5008-5021.e8, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327979

RESUMO

Animals benefit from knowing if and how they are moving. Across the animal kingdom, sensory information in the form of optic flow over the visual field is used to estimate self-motion. However, different species exhibit strong spatial biases in how they use optic flow. Here, we show computationally that noisy natural environments favor visual systems that extract spatially biased samples of optic flow when estimating self-motion. The performance associated with these biases, however, depends on interactions between the environment and the animal's brain and behavior. Using the larval zebrafish as a model, we recorded natural optic flow associated with swimming trajectories in the animal's habitat with an omnidirectional camera mounted on a mechanical arm. An analysis of these flow fields suggests that lateral regions of the lower visual field are most informative about swimming speed. This pattern is consistent with the recent findings that zebrafish optomotor responses are preferentially driven by optic flow in the lateral lower visual field, which we extend with behavioral results from a high-resolution spherical arena. Spatial biases in optic-flow sampling are likely pervasive because they are an effective strategy for determining self-motion in noisy natural environments.


Assuntos
Fluxo Óptico , Animais , Peixe-Zebra , Natação
11.
J Neurosci ; 30(20): 7111-20, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20484654

RESUMO

The optokinetic response (OKR) to a visual stimulus moving at constant velocity consists of a series of two alternating components, a slow phase, during which the eyes follow the stimulus, and a quick phase, which resets the eyes to begin a new response cycle. The quick phases of the OKR resemble the saccades observed during free viewing. It is unclear to what extent the premotor circuitry underlying these two types of jerky, conjugate eye movements is conserved among vertebrates. Zebrafish (Danio rerio) larvae, broadly expressing halorhodopsin (NpHR) or channelrhodopsin-2 (ChR2) in most neurons, were used to map the location of neurons involved in this behavior. By blocking activity in localized groups of NpHR-expressing neurons with an optic fiber positioned above the head of the fish and by systematically varying the site of photostimulation, we discovered that activity in a small hindbrain area in rhombomere 5 was necessary for saccades to occur. Unilateral block of activity at this site affected behavior in a direction-specific manner. Inhibition of the right side suppressed rightward saccades of both eyes, while leaving leftward saccades unaffected, and vice versa. Photostimulation of this area in ChR2-transgenic fish was sufficient to trigger saccades that were precisely locked to the light pulses. These extra saccades could be induced both during free viewing and during the OKR, and were distinct in their kinetics from eye movements elicited by stimulating the abducens motor neurons. Zebrafish double indemnity (didy) mutants were identified in a chemical mutagenesis screen based on a defect in sustaining saccades during OKR. Positional cloning, molecular analysis, and electrophysiology revealed that the didy mutation disrupts the voltage-gated sodium channel Scn1lab (Nav1.lb). ChR2 photostimulation of the putative hindbrain saccade generator was able to fully reconstitute saccades in the didy mutant. Our studies demonstrate that an optogenetic approach is useful for targeted loss-of-function and gain-of-function manipulations of neural circuitry underlying eye movements in zebrafish and that the saccade-generating circuit in this species shares many of its properties with that in mammals.


Assuntos
Mutação/genética , Neurônios/fisiologia , Nistagmo Optocinético/genética , Movimentos Sacádicos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Halorrodopsinas/genética , Cinética , Larva , Proteínas Luminescentes/genética , Microinjeções/métodos , Mutagênese Sítio-Dirigida/métodos , Oócitos , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Rombencéfalo/citologia , Canais de Sódio/genética , Xenopus
12.
Sci Rep ; 11(1): 12644, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135354

RESUMO

Saccades are rapid eye movements that redirect gaze. Their magnitudes and directions are tightly controlled by the oculomotor system, which is capable of generating conjugate, monocular, convergent and divergent saccades. Recent studies suggest a mainly monocular control of saccades in mammals, although the development of binocular control and the interaction of different functional populations is less well understood. For zebrafish, a well-established model in sensorimotor research, the nature of binocular control in this key oculomotor behavior is unknown. Here, we use the optokinetic response and calcium imaging to characterize how the developing zebrafish oculomotor system encodes the diverse repertoire of saccades. We find that neurons with phasic saccade-associated activity (putative burst neurons) are most frequent in dorsal regions of the hindbrain and show elements of both monocular and binocular encoding, revealing a mix of the response types originally hypothesized by Helmholtz and Hering. Additionally, we observed a certain degree of behavior-specific recruitment in individual neurons. Surprisingly, calcium activity is only weakly tuned to saccade size. Instead, saccade size is apparently controlled by a push-pull mechanism of opposing burst neuron populations. Our study reveals the basic layout of a developing vertebrate saccade system and provides a perspective into the evolution of the oculomotor system.


Assuntos
Movimentos Sacádicos/fisiologia , Visão Binocular/fisiologia , Peixe-Zebra/fisiologia , Animais , Neurônios/fisiologia , Rombencéfalo/citologia , Rombencéfalo/fisiologia
13.
Sci Rep ; 11(1): 3204, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547357

RESUMO

Delivering appropriate stimuli remains a challenge in vision research, particularly for aquatic animals such as zebrafish. Due to the shape of the water tank and the associated optical paths of light rays, the stimulus can be subject to unwanted refraction or reflection artifacts, which may spoil the experiment and result in wrong conclusions. Here, we employ computer graphics simulations and calcium imaging in the zebrafish optic tectum to show, how a spherical glass container optically outperforms many previously used water containers, including Petri dish lids. We demonstrate that aquatic vision experiments suffering from total internal reflection artifacts at the water surface or at the flat container bottom may result in the erroneous detection of visual neurons with bipartite receptive fields and in the apparent absence of neurons selective for vertical motion. Our results and demonstrations will help aquatic vision neuroscientists on optimizing their stimulation setups.


Assuntos
Estimulação Luminosa , Colículos Superiores/fisiologia , Peixe-Zebra/fisiologia , Animais , Artefatos , Sinalização do Cálcio , Gráficos por Computador , Feminino , Masculino , Visão Ocular
14.
Elife ; 102021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100720

RESUMO

Many animals have large visual fields, and sensory circuits may sample those regions of visual space most relevant to behaviours such as gaze stabilisation and hunting. Despite this, relatively small displays are often used in vision neuroscience. To sample stimulus locations across most of the visual field, we built a spherical stimulus arena with 14,848 independently controllable LEDs. We measured the optokinetic response gain of immobilised zebrafish larvae to stimuli of different steradian size and visual field locations. We find that the two eyes are less yoked than previously thought and that spatial frequency tuning is similar across visual field positions. However, zebrafish react most strongly to lateral, nearly equatorial stimuli, consistent with previously reported spatial densities of red, green, and blue photoreceptors. Upside-down experiments suggest further extra-retinal processing. Our results demonstrate that motion vision circuits in zebrafish are anisotropic, and preferentially monitor areas with putative behavioural relevance.


Assuntos
Nistagmo Optocinético/fisiologia , Estimulação Luminosa/métodos , Retina/fisiologia , Campos Visuais/fisiologia , Animais , Feminino , Humanos , Larva/fisiologia , Larva/efeitos da radiação , Camundongos , Camundongos Transgênicos , Nistagmo Optocinético/efeitos da radiação , Retina/efeitos da radiação , Campos Visuais/efeitos da radiação , Peixe-Zebra
15.
Cell Rep ; 30(2): 442-453.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940488

RESUMO

Non-cortical visual areas in vertebrate brains extract relevant stimulus features, such as motion, object size, and location, to support diverse behavioral tasks. The optic tectum and pretectum, two primary visual areas in zebrafish, are involved in motion processing, and yet their differential neural representation of behaviorally relevant visual features is unclear. Here, we characterize receptive fields (RFs) of motion-sensitive neurons in the diencephalon and midbrain. We show that RFs of many pretectal neurons are large and sample the lower visual field, whereas RFs of tectal neurons are mostly small-size selective and sample the upper nasal visual field more densely. Furthermore, optomotor swimming can reliably be evoked by presenting forward motion in the lower temporal visual field alone, matching the lower visual field bias of the pretectum. Thus, tectum and pretectum extract different visual features from distinct regions of visual space, which is likely a result of their adaptations to hunting and optomotor behavior, respectively.


Assuntos
Encéfalo/fisiologia , Larva/fisiologia , Área Pré-Tectal/fisiologia , Colículos Superiores/fisiologia , Animais , Peixe-Zebra
16.
J Neurosci Methods ; 326: 108366, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356837

RESUMO

BACKGROUND: The systematic characterization of receptive fields (RF) is essential for understanding visual motion processing. The performance of RF estimation depends on the employed stimuli, the complexity of the encoded features, and the quality of the activity readout. Calcium imaging is an attractive readout method for high-throughput neuronal activity recordings. However, calcium recordings are oftentimes noisy and of low temporal resolution. The RF estimation of neurons sensitive to global motion is particularly challenging due to their potentially complex combination of preferred directions across visual field positions. NEW METHOD: Here, we present a novel noise stimulus, which is enriched with spatiotemporally contiguous motion and thus triggers robust calcium responses. We combined this contiguous motion noise (CMN) stimulus with reverse correlation followed by a two-step nonparametric cluster-based bootstrapping test for efficient and reliable RF estimation. RESULTS: The in silico evaluation of our approach showed that RF centre positions and preferred directions are reliably detected in most of the simulated neurons. Suppressive RF components were detected in 40% of the simulated neurons. We successfully applied our approach to estimate the RFs of 163 motion-sensitive neurons in vivo within 40 min in the pretectum of zebrafish. Many in vivo neurons were sensitive to elaborate directional flow fields in their RFs. COMPARISON WITH EXISTING METHODS: Our approach outperforms white noise methods and others due to the optimized motion stimulus statistics and ascertainable fine RF structures. CONCLUSIONS: The CMN method enables efficient, non-biased RF estimation and will benefit systematic high-throughput investigations of RFs using calcium imaging.


Assuntos
Modelos Biológicos , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Neurociências/métodos , Fluxo Óptico/fisiologia , Área Pré-Tectal/fisiologia , Campos Visuais/fisiologia , Animais
17.
Nat Protoc ; 14(7): 2258, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30131593

RESUMO

The version of this paper originally published contained the following text errors: (1) In the abstract, "(ii) visual stimulation with moving bars; (ii) eye detection and tracking, as well as general motion detection" should have been "(ii) visual stimulation with moving bars; (iii) eye detection and tracking, as well as general motion detection." (2) In the legend for Table 1, "vertical pixel coordinate; LE, left eye; RE, right eye; x, horizontal pixel coordinate; y" should have read "LE, left eye; RE, right eye; x, horizontal pixel coordinate; y, vertical pixel coordinate." These errors have been corrected in the HTML and PDF versions of the paper.

18.
Nat Protoc ; 13(7): 1539-1568, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29988103

RESUMO

Reliable measurement of spontaneous and evoked eye movement is critical for behavioral vision research. Zebrafish are increasingly used as a model organism for visual neural circuits, but ready-to-use eye-tracking solutions are scarce. Here, we present a protocol for automated real-time measurement of angular horizontal eye position in up to six immobilized larval fish using a custom-built LabVIEW-based software, ZebEyeTrack. We provide its customizable source code, as well as a streamlined and compiled version, ZebEyeTrack Light. The full version of ZebEyeTrack controls all required hardware and synchronizes six essential aspects of the experiment: (i) stimulus design; (ii) visual stimulation with moving bars; (ii) eye detection and tracking, as well as general motion detection; (iv) real-time analysis; (v) eye-position-dependent closed-loop event control; and (vi) recording of external event times. This includes optional integration with external hardware such as lasers and scanning microscopes. Once installation is complete, experiments, including stimulus design, can be completed in <10 min, and recordings can last anywhere between seconds and many hours. Results include digitized angular eye positions and hardware status, which can be used to compute tuning curves, optokinetic gain, and other custom data analysis. After the experiment, or based on existing videos, optokinetic response (OKR) performance can be analyzed semi-automatically via the graphical user interface, and results can be exported. ZebEyeTrack has been used successfully for psychophysics experiments, for optogenetic stimulation, and in combination with calcium imaging.


Assuntos
Movimentos Oculares , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Peixe-Zebra/fisiologia , Animais , Automação Laboratorial/métodos , Larva/fisiologia , Software
19.
Curr Biol ; 27(3): 318-333, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089511

RESUMO

The vertebrate diencephalic A11 system provides the sole dopaminergic innervation of hindbrain and spinal cord and has been implicated in modulation of locomotion and sensory processes. However, the exact contributions of sensory stimuli and motor behavior to A11 dopaminergic activity remain unclear. We recorded cellular calcium activity in four anatomically distinct posterior tubercular A11-type dopaminergic subgroups and two adjacent hypothalamic dopaminergic groups in GCaMP7a-transgenic, semi-restrained zebrafish larvae. Our analyses reveal the contributions of different sensory modalities and motor states to dopaminergic activity. Each posterior tubercular and hypothalamic subgroup showed distinct activity patterns, while activity was synchronous within individual subgroups. Caudal and dorsomedial hypothalamic dopaminergic neurons are activated following vigorous tail movements and stay active for about 10 s, revealing predominantly post-motor activity. In contrast, posterior tubercular dopaminergic neurons are predominantly sensory driven, with subgroups differentially responding to different tactile or visual sensory modalities. In the anterior subgroups, neuronal response magnitudes are tuned to tactile stimulus intensities, revealing features similar to sensory systems. We identify the lateral line system as source for this tactile tuning. In contrast, the posterior subgroup is responsive to distinct moving visual stimuli. Specifically, translational forward stimuli, which may indicate insufficient rheotaxis and drift, induce dopaminergic activity, but backward or rotational stimuli not. The activation of posterior tubercular dopaminergic neurons by sensory stimuli, and their projections onto peripheral mechanosensory systems, suggests a participation of A11-type neurons in the feedback regulation of sensory systems. Together with the adjacent hypothalamic neurons, they may serve to set basic behavioral states.


Assuntos
Diencéfalo/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Atividade Motora/fisiologia , Células Receptoras Sensoriais/metabolismo , Peixe-Zebra/fisiologia , Animais , Diencéfalo/citologia , Neurônios Dopaminérgicos/citologia , Mecanotransdução Celular , Reconhecimento Visual de Modelos , Estimulação Luminosa , Vias Visuais
20.
Methods Mol Biol ; 1451: 343-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27464820

RESUMO

The perturbation of neural activity is a powerful experimental approach for understanding brain function. Light-gated ion channels and pumps (optogenetics) can be used to control neural activity with high temporal and spatial precision in animal models. This optogenetic approach requires suitable methods for delivering light to the brain. In zebrafish, fiber optic stimulation of agarose-embedded larvae has successfully been used in several studies to control neural activity and behavior. This approach is easy to implement and cost-efficient. Here, a protocol for fiber optic-based photostimulation of larval zebrafish is provided.


Assuntos
Tecnologia de Fibra Óptica/métodos , Larva/metabolismo , Optogenética/métodos , Peixe-Zebra/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA