Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Aging Cell ; 22(8): e13888, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222020

RESUMO

Rapamycin is a macrolide antibiotic that functions as an immunosuppressive and anti-cancer agent, and displays robust anti-ageing effects in multiple organisms including humans. Importantly, rapamycin analogues (rapalogs) are of clinical importance against certain cancer types and neurodevelopmental diseases. Although rapamycin is widely perceived as an allosteric inhibitor of mTOR (mechanistic target of rapamycin), the master regulator of cellular and organismal physiology, its specificity has not been thoroughly evaluated so far. In fact, previous studies in cells and in mice hinted that rapamycin may be also acting independently from mTOR to influence various cellular processes. Here, we generated a gene-edited cell line that expresses a rapamycin-resistant mTOR mutant (mTORRR ) and assessed the effects of rapamycin treatment on the transcriptome and proteome of control or mTORRR -expressing cells. Our data reveal a striking specificity of rapamycin towards mTOR, demonstrated by virtually no changes in mRNA or protein levels in rapamycin-treated mTORRR cells, even following prolonged drug treatment. Overall, this study provides the first unbiased and conclusive assessment of rapamycin's specificity, with potential implications for ageing research and human therapeutics.


Assuntos
Inibidores de MTOR , Transdução de Sinais , Camundongos , Humanos , Animais , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
2.
J Assoc Res Otolaryngol ; 19(5): 483-491, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171385

RESUMO

This study examines absolute hair cell numbers in the cristae of C57BL/6J mice and CBA/CaJ mice from weaning to adulthood as well as the dose required for 3,3'-iminodiproprionitrile (IDPN)-injury of the cristae in C57BL/6J mice and CBA/CaJ mice, the two mouse strains most commonly used by inner ear researchers. In cristae of CBA/CaJ and C57BL/6J mice, no loss of hair cells was observed up to 24 weeks. In both strains, dose-dependent loss of hair cells was observed 7 days after IDPN treatment of 2-month-old mice (IC50 = 16.1 mmol/kg in C57BL/6J mice vs. 25.21 mmol/kg in CBA/CaJ mice). Four-month-old C57BL/6J mice exposed to IDPN developed dose-dependent vestibular dysfunction as indicated by increased activity and circling behavior in open field tests and by failure to swim 7 days after treatment. IDPN-hair cell injury in C57BL/6J mice and CBA/CaJ mice represents a fast and predictable experimental model for the study of vestibular degeneration and a platform for the testing of vestibular therapies.


Assuntos
Células Ciliadas Auditivas/efeitos dos fármacos , Nitrilas/toxicidade , Animais , Contagem de Células , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
3.
Cell Cycle ; 17(5): 535-549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466914

RESUMO

To easily edit the genome of naïve human embryonic stem cells (hESC), we introduced a dual cassette encoding an inducible Cas9 into the AAVS1 site of naïve hESC (iCas9). The iCas9 line retained karyotypic stability, expression of pluripotency markers, differentiation potential, and stability in 5iLA and EPS pluripotency conditions. The iCas9 line induced efficient homology-directed repair (HDR) and non-homologous end joining (NHEJ) based mutations through CRISPR-Cas9 system. We utilized the iCas9 line to study the epigenetic regulator, PRC2 in early human pluripotency. The PRC2 requirement distinguishes between early pluripotency stages, however, what regulates PRC2 activity in these stages is not understood. We show reduced H3K27me3 and pluripotency markers in JARID2 2iL-I-F hESC mutants, indicating JARID2 requirement in maintenance of hESC 2iL-I-F state. These data suggest that JARID2 regulates PRC2 in 2iL-I-F state and the lack of PRC2 function in 5iLA state may be due to lack of sufficient JARID2 protein.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Complexo Repressor Polycomb 2/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Autorrenovação Celular , Reparo do DNA por Junção de Extremidades , Loci Gênicos , Histonas/metabolismo , Células-Tronco Embrionárias Humanas , Humanos , Mutação INDEL , Microscopia Confocal , Fenótipo , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Domínios Proteicos
4.
Elife ; 62017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925355

RESUMO

Aging stem cells lose the capacity to properly respond to injury and regenerate their residing tissues. Here, we utilized the ability of Drosophila melanogaster germline stem cells (GSCs) to survive exposure to low doses of ionizing radiation (IR) as a model of adult stem cell injury and identified a regeneration defect in aging GSCs: while aging GSCs survive exposure to IR, they fail to reenter the cell cycle and regenerate the germline in a timely manner. Mechanistically, we identify foxo and mTOR homologue, Tor as important regulators of GSC quiescence following exposure to ionizing radiation. foxo is required for entry in quiescence, while Tor is essential for cell cycle reentry. Importantly, we further show that the lack of regeneration in aging germ line stem cells after IR can be rescued by loss of foxo.


Assuntos
Senescência Celular , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Germinativas/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/fisiologia , Animais , Proliferação de Células/efeitos da radiação , Drosophila melanogaster/efeitos da radiação , Células Germinativas/efeitos da radiação , Radiação Ionizante , Células-Tronco/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA