Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Brain Topogr ; 37(3): 420-431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416284

RESUMO

Over the past years, different studies provided preliminary evidence that Disorganized Attachment (DA) may have dysregulatory and disintegrative effects on both autonomic arousal regulation and brain connectivity. However, despite the clinical relevance of this construct, few studies have investigated the specific alterations underlying DA using electroencephalography (EEG). Thus, the main aim of the current study was to investigate EEG microstate parameters of DA in a non-clinical sample (N = 50) before (pre) and after (post) the administration of the Adult Attachment Interview (AAI). Two EEG eyes-closed Resting State (RS) recordings were performed before and after the AAI, which was used for classifying the participants [i.e., Disorganized/Unresolved (D/U) or Organized/Resolved (O/R) individuals] and to trigger the attachment system. Microstates parameters (i.e., Mean Duration, Time Coverage and Occurrence) were extracted from each recording using Cartool software. EEG microstates clustering analysis revealed 6 different maps (labeled A, B, C, D, E, F) in both groups (i.e., D/U and O/R individuals) and in both conditions (i.e., pre-AAI and post-AAI). In the pre-AAI condition, compared to O/R individuals, D/U participants showed a shorter Mean Duration and Time Coverage of Map F; in the post-AAI condition, a significant reduction in the Mean Duration of Map E was also observed in D/U individuals. Finally, in the "within" statistical analysis (i.e., pre-AAI vs. post-AAI), only the D/U group exhibited a significant increase in Time Coverage of Map F after the AAI. Since these maps are associated with brain networks involved in emotional information processing and mentalization (i.e., Salience Network and Default Mode Network), our result might reflect the deficit in the ability to mentalize caregiver's interaction as well as the increased sensitivity to attachment-related stimuli typically observed in individuals with a D/U state of mind.


Assuntos
Encéfalo , Eletroencefalografia , Adulto , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição , Emoções
2.
Brain Topogr ; 37(2): 218-231, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37515678

RESUMO

Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of associations of biological and psychological states and traits with specific microstate classes. However, currently, this cross-referencing among apparently similar microstate classes of different studies is typically done by "eyeballing" of printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity of future findings, we present a tool to systematically collect the actual data of template maps from as many published studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps from ongoing or published studies. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Reprodutibilidade dos Testes , Olho
3.
Neuroimage ; 277: 120196, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286153

RESUMO

Microstates represent electroencephalographic (EEG) activity as a sequence of switching, transient, metastable states. Growing evidence suggests the useful information on brain states is to be found in the higher-order temporal structure of these sequences. Instead of focusing on transition probabilities, here we propose "Microsynt", a method designed to highlight higher-order interactions that form a preliminary step towards understanding the syntax of microstate sequences of any length and complexity. Microsynt extracts an optimal vocabulary of "words" based on the length and complexity of the full sequence of microstates. Words are then sorted into classes of entropy and their representativeness within each class is statistically compared with surrogate and theoretical vocabularies. We applied the method on EEG data previously collected from healthy subjects undergoing propofol anesthesia, and compared their "fully awake" (BASE) and "fully unconscious" (DEEP) conditions. Results show that microstate sequences, even at rest, are not random but tend to behave in a more predictable way, favoring simpler sub-sequences, or "words". Contrary to high-entropy words, lowest-entropy binary microstate loops are prominent and favored on average 10 times more than what is theoretically expected. Progressing from BASE to DEEP, the representation of low-entropy words increases while that of high-entropy words decreases. During the awake state, sequences of microstates tend to be attracted towards "A - B - C" microstate hubs, and most prominently A - B binary loops. Conversely, with full unconsciousness, sequences of microstates are attracted towards "C - D - E" hubs, and most prominently C - E binary loops, confirming the putative relation of microstates A and B to externally-oriented cognitive processes and microstate C and E to internally-generated mental activity. Microsynt can form a syntactic signature of microstate sequences that can be used to reliably differentiate two or more conditions.


Assuntos
Eletroencefalografia , Propofol , Humanos , Encéfalo , Mapeamento Encefálico , Vigília
4.
Neuroimage ; 256: 119156, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364276

RESUMO

Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step-wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereotypical microstates, which became sparser and longer-lasting. However, we observed an initial increase in microstates' temporal dynamics and complexity with increasing depth of sedation leading to a distinctive "U-shape" that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this critical balance between stability and transition that lead to altered states of consciousness.


Assuntos
Estado de Consciência , Propofol , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Eletroencefalografia/métodos , Humanos , Propofol/farmacologia , Inconsciência/induzido quimicamente
5.
Neuroimage ; 224: 116778, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289453

RESUMO

EEGLAB signal processing environment is currently the leading open-source software for processing electroencephalographic (EEG) data. The Neuroscience Gateway (NSG, nsgportal.org) is a web and API-based portal allowing users to easily run a variety of neuroscience-related software on high-performance computing (HPC) resources in the U.S. XSEDE network. We have reported recently (Delorme et al., 2019) on the Open EEGLAB Portal expansion of the free NSG services to allow the neuroscience community to build and run MATLAB pipelines using the EEGLAB tool environment. We are now releasing an EEGLAB plug-in, nsgportal, that interfaces EEGLAB with NSG directly from within EEGLAB running on MATLAB on any personal lab computer. The plug-in features a flexible MATLAB graphical user interface (GUI) that allows users to easily submit, interact with, and manage NSG jobs, and to retrieve and examine their results. Command line nsgportal tools supporting these GUI functionalities allow EEGLAB users and plug-in tool developers to build largely automated functions and workflows that include optional NSG job submission and processing. Here we present details on nsgportal implementation and documentation, provide user tutorials on example applications, and show sample test results comparing computation times using HPC versus laptop processing.


Assuntos
Eletroencefalografia , Neurociências , Software , Interface Usuário-Computador , Algoritmos , Eletroencefalografia/métodos , Processamento Eletrônico de Dados , Humanos
6.
Proc Natl Acad Sci U S A ; 115(31): 7913-7918, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012599

RESUMO

The accurate teleoperation of robotic devices requires simple, yet intuitive and reliable control interfaces. However, current human-machine interfaces (HMIs) often fail to fulfill these characteristics, leading to systems requiring an intensive practice to reach a sufficient operation expertise. Here, we present a systematic methodology to identify the spontaneous gesture-based interaction strategies of naive individuals with a distant device, and to exploit this information to develop a data-driven body-machine interface (BoMI) to efficiently control this device. We applied this approach to the specific case of drone steering and derived a simple control method relying on upper-body motion. The identified BoMI allowed participants with no prior experience to rapidly master the control of both simulated and real drones, outperforming joystick users, and comparing with the control ability reached by participants using the bird-like flight simulator Birdly.

7.
Neuroimage ; 175: 176-187, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526744

RESUMO

Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia/métodos , Reconhecimento Visual de Modelos/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Eletroencefalografia/normas , Feminino , Humanos , Masculino , Análise de Componente Principal , Adulto Jovem
8.
Neuroimage ; 159: 403-416, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782683

RESUMO

In lower mammals, locomotion seems to be mainly regulated by subcortical and spinal networks. On the contrary, recent evidence suggests that in humans the motor cortex is also significantly engaged during complex locomotion tasks. However, a detailed understanding of cortical contribution to locomotion is still lacking especially during stereotyped activities. Here, we show that cortical motor areas finely control leg muscle activation during treadmill stereotyped walking. Using a novel technique based on a combination of Reliable Independent Component Analysis, source localization and effective connectivity, and by combining electroencephalographic (EEG) and electromyographic (EMG) recordings in able-bodied adults we were able to examine for the first time cortical activation patterns and cortico-muscular connectivity including information flow direction. Results not only provided evidence of cortical activity associated with locomotion, but demonstrated significant causal unidirectional drive from contralateral motor cortex to muscles in the swing leg. These insights overturn the traditional view that human cortex has a limited role in the control of stereotyped locomotion, and suggest useful hypotheses concerning mechanisms underlying gait under other conditions. ONE SENTENCE SUMMARY: Motor cortex proactively drives contralateral swing leg muscles during treadmill walking, counter to the traditional view of stereotyped human locomotion.


Assuntos
Córtex Motor/fisiologia , Músculo Esquelético/inervação , Vias Neurais/fisiologia , Caminhada/fisiologia , Adulto , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino
9.
Brain Topogr ; 30(4): 473-485, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28497235

RESUMO

The sense of touch is fundamental for daily behavior. The aim of this work is to understand the neural network responsible for touch processing during a prolonged tactile stimulation, delivered by means of a mechatronic platform by passively sliding a ridged surface under the subject's fingertip while recording the electroencephalogram (EEG). We then analyzed: (i) the temporal features of the Somatosensory Evoked Potentials and their topographical distribution bilaterally across the cortex; (ii) the associated temporal modulation of the EEG frequency bands. Long-latency SEP were identified with the following physiological sequence P100-N140-P240. P100 and N140 were bilateral potentials with higher amplitude in the contralateral hemisphere and with delayed latency in the ipsilateral side. Moreover, we found a late potential elicited around 200 ms after the stimulation was stopped, which likely encoded the end of tactile input. The analysis of cortical oscillations indicated an initial increase in the power of theta band (4-7 Hz) for 500 ms after the stimulus onset followed a decrease in the power of the alpha band (8-15 Hz) that lasted for the remainder of stimulation. This decrease was prominent in the somatosensory cortex and equally distributed in both contralateral and ipsilateral hemispheres. This study shows that prolonged stimulation of the human fingertip engages the cortex in widespread bilateral processing of tactile information, with different modulations of the theta and alpha bands across time.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Dedos/fisiologia , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Física , Análise Espaço-Temporal , Adulto Jovem
10.
Neuroimage ; 103: 391-400, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234117

RESUMO

Independent Component Analysis (ICA) is a widely applied data-driven method for parsing brain and non-brain EEG source signals, mixed by volume conduction to the scalp electrodes, into a set of maximally temporally and often functionally independent components (ICs). Many ICs may be identified with a precise physiological or non-physiological origin. However, this process is hindered by partial instability in ICA results that can arise from noise in the data. Here we propose RELICA (RELiable ICA), a novel method to characterize IC reliability within subjects. RELICA first computes IC "dipolarity" a measure of physiological plausibility, plus a measure of IC consistency across multiple decompositions of bootstrap versions of the input data. RELICA then uses these two measures to visualize and cluster the separated ICs, providing a within-subject measure of IC reliability that does not involve checking for its occurrence across subjects. We demonstrate the use of RELICA on EEG data recorded from 14 subjects performing a working memory experiment and show that many brain and ocular artifact ICs are correctly classified as "stable" (highly repeatable across decompositions of bootstrapped versions of the input data). Many stable ICs appear to originate in the brain, while other stable ICs account for identifiable non-brain processes such as line noise. RELICA might be used with any linear blind source separation algorithm to reduce the risk of basing conclusions on unstable or physiologically un-interpretable component processes.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Adulto Jovem
11.
Brain Topogr ; 27(6): 771-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24375284

RESUMO

Voluntary breath holding represents a physiological model of hypoxia. It consists of two phases of oxygen saturation dynamics: an initial slow decrease (normoxic phase) followed by a rapid drop (hypoxic phase) during which transitory neurological symptoms as well as slight impairment of integrated cerebral functions, such as emotional processing, can occur. This study investigated how breath holding affects emotional processing. To this aim we characterized the modulation of event-related potentials (ERPs) evoked by emotional-laden pictures as a function of breath holding time course. We recorded ERPs during free breathing and breath holding performed in air by elite apnea divers. We modeled brain responses during free breathing with four independent components distributed over different brain areas derived by an approach based on the independent component analysis (ICASSO). We described ERP changes during breath holding by estimating amplitude scaling and time shifting of the same components (component adaptation analysis). Component 1 included the main EEG features of emotional processing, had a posterior localization and did not change during breath holding; component 2, localized over temporo-frontal regions, was present only in unpleasant stimuli responses and decreased during breath holding, with no differences between breath holding phases; component 3, localized on the fronto-central midline regions, showed phase-independent breath holding decreases; component 4, quite widespread but with frontal prevalence, decreased in parallel with the hypoxic trend. The spatial localization of these components was compatible with a set of processing modules that affects the automatic and intentional controls of attention. The reduction of unpleasant-related ERP components suggests that the evaluation of aversive and/or possibly dangerous situations might be altered during breath holding.


Assuntos
Afeto/fisiologia , Suspensão da Respiração , Córtex Cerebral/fisiologia , Adulto , Interpretação Estatística de Dados , Eletroencefalografia , Potenciais Evocados , Humanos , Hipóxia , Masculino , Adulto Jovem
12.
APL Bioeng ; 8(2): 026123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894958

RESUMO

Electrical stimulation of the visual nervous system could improve the quality of life of patients affected by acquired blindness by restoring some visual sensations, but requires careful optimization of stimulation parameters to produce useful perceptions. Neural correlates of elicited perceptions could be used for fast automatic optimization, with electroencephalography as a natural choice as it can be acquired non-invasively. Nonetheless, its low signal-to-noise ratio may hinder discrimination of similar visual patterns, preventing its use in the optimization of electrical stimulation. Our work investigates for the first time the discriminability of the electroencephalographic responses to visual stimuli compatible with electrical stimulation, employing a newly acquired dataset whose stimuli encompass the concurrent variation of several features, while neuroscience research tends to study the neural correlates of single visual features. We then performed above-chance single-trial decoding of multiple features of our newly crafted visual stimuli using relatively simple machine learning algorithms. A decoding scheme employing the information from multiple stimulus presentations was implemented, substantially improving our decoding performance, suggesting that such methods should be used systematically in future applications. The significance of the present work relies in the determination of which visual features can be decoded from electroencephalographic responses to electrical stimulation-compatible stimuli and at which granularity they can be discriminated. Our methods pave the way to using electroencephalographic correlates to optimize electrical stimulation parameters, thus increasing the effectiveness of current visual neuroprostheses.

13.
Sci Rep ; 13(1): 21618, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062035

RESUMO

The effects of robotic-assisted gait (RAG) training, besides conventional therapy, on neuroplasticity mechanisms and cortical integration in locomotion are still uncertain. To advance our knowledge on the matter, we determined the involvement of motor cortical areas in the control of muscle activity in healthy subjects, during RAG with Lokomat, both with maximal guidance force (100 GF-passive RAG) and without guidance force (0 GF-active RAG) as customary in rehabilitation treatments. We applied a novel cortico-muscular connectivity estimation procedure, based on Partial Directed Coherence, to jointly study source localized EEG and EMG activity during rest (standing) and active/passive RAG. We found greater cortico-cortical connectivity, with higher path length and tendency toward segregation during rest than in both RAG conditions, for all frequency bands except for delta. We also found higher cortico-muscular connectivity in distal muscles during swing (0 GF), and stance (100 GF), highlighting the importance of direct supraspinal control to maintain balance, even when gait is supported by a robotic exoskeleton. Source-localized connectivity shows that this control is driven mainly by the parietal and frontal lobes. The involvement of many cortical areas also in passive RAG (100 GF) justifies the use of the 100 GF RAG training for neurorehabilitation, with the aim of enhancing cortical-muscle connections and driving neural plasticity in neurological patients.


Assuntos
Exoesqueleto Energizado , Caminhada , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Músculo Esquelético , Terapia por Exercício/métodos
14.
J Neural Eng ; 20(2)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37019103

RESUMO

Objective.Syntax involves complex neurobiological mechanisms, which are difficult to disentangle for multiple reasons. Using a protocol able to separate syntactic information from sound information we investigated the neural causal connections evoked by the processing of homophonous phrases, i.e. with the same acoustic information but with different syntactic content. These could be either verb phrases (VP) or noun phrases.Approach. We used event-related causality from stereo-electroencephalographic recordings in ten epileptic patients in multiple cortical and subcortical areas, including language areas and their homologous in the non-dominant hemisphere. The recordings were made while the subjects were listening to the homophonous phrases.Main results.We identified the different networks involved in the processing of these syntactic operations (faster in the dominant hemisphere) showing that VPs engage a wider cortical and subcortical network. We also present a proof-of-concept for the decoding of the syntactic category of a perceived phrase based on causality measures.Significance. Our findings help unravel the neural correlates of syntactic elaboration and show how a decoding based on multiple cortical and subcortical areas could contribute to the development of speech prostheses for speech impairment mitigation.


Assuntos
Idioma , Semântica , Humanos , Eletroencefalografia , Fala , Percepção Auditiva
15.
J Neural Eng ; 18(5)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34534968

RESUMO

Objective.Stereo-electroencephalography (SEEG) has recently gained importance in analyzing brain functions. Its high temporal resolution and spatial specificity make it a powerful tool to investigate the strength, direction, and spectral content of brain networks interactions, especially when these connections are stimulus-evoked. However, choosing the best approach to evaluate the flow of information is not trivial, due to the lack of validated methods explicitly designed for SEEG.Approach.We propose a novel non-parametric statistical test for event-related causality (ERC) assessment on SEEG recordings. Here, we refer to the ERC as the causality evoked by a particular part of the stimulus (a response window (RW)). We also present a data surrogation method to evaluate the performance of a causality estimation algorithm. We finally validated our pipeline using surrogate SEEG data derived from an experimentally collected dataset, and compared the most used and successful measures to estimate effective connectivity, belonging to the Geweke-Granger causality framework.Main results.Here we show that our workflow correctly identified all the directed connections in the RW of the surrogate data and prove the robustness of the procedure against synthetic noise with amplitude exceeding physiological-plausible values. Among the causality measures tested, partial directed coherence performed best.Significance.This is the first non-parametric statistical test for ERC estimation explicitly designed for SEEG datasets. The pipeline, in principle, can also be applied to the analysis of any type of time-varying estimator, if there exists a clearly defined RW.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Algoritmos , Encéfalo , Causalidade
16.
Front Hum Neurosci ; 15: 669915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276326

RESUMO

Brain lesions caused by cerebral ischemia lead to network disturbances in both hemispheres, causing a subsequent reorganization of functional connectivity both locally and remotely with respect to the injury. Quantitative electroencephalography (qEEG) methods have long been used for exploring brain electrical activity and functional connectivity modifications after stroke. However, results obtained so far are not univocal. Here, we used basic and advanced EEG methods to characterize how brain activity and functional connectivity change after stroke. Thirty-three unilateral post stroke patients in the sub-acute phase and ten neurologically intact age-matched right-handed subjects were enrolled. Patients were subdivided into two groups based on lesion location: cortico-subcortical (CS, n = 18) and subcortical (S, n = 15), respectively. Stroke patients were evaluated in the period ranging from 45 days since the acute event (T0) up to 3 months after stroke (T1) with both neurophysiological (resting state EEG) and clinical assessment (Barthel Index, BI) measures, while healthy subjects were evaluated once. Brain power at T0 was similar between the two groups of patients in all frequency bands considered (δ, θ, α, and ß). However, evolution of θ-band power over time was different, with a normalization only in the CS group. Instead, average connectivity and specific network measures (Integration, Segregation, and Small-worldness) in the ß-band at T0 were significantly different between the two groups. The connectivity and network measures at T0 also appear to have a predictive role in functional recovery (BI T1-T0), again group-dependent. The results obtained in this study showed that connectivity measures and correlations between EEG features and recovery depend on lesion location. These data, if confirmed in further studies, on the one hand could explain the heterogeneity of results so far observed in previous studies, on the other hand they could be used by researchers as biomarkers predicting spontaneous recovery, to select homogenous groups of patients for the inclusion in clinical trials.

17.
Cereb Cortex Commun ; 2(2): tgab012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296158

RESUMO

Trigeminal sensorimotor activity stimulates arousal and cognitive performance, likely through activation of the locus coeruleus (LC). In this study we investigated, in normal subjects, the effects of bilateral trigeminal nerve stimulation (TNS) on the LC-dependent P300 wave, elicited by an acoustic oddball paradigm. Pupil size, a proxy of LC activity, and electroencephalographic power changes were also investigated. Before TNS/sham-TNS, pupil size did not correlate with P300 amplitude across subjects. After TNS but not sham-TNS, a positive correlation emerged between P300 amplitude and pupil size within frontal and median cortical regions. TNS also reduced P300 amplitude in several cortical areas. In both groups, before and after TNS/sham-TNS, subjects correctly indicated all the target stimuli. We propose that TNS activates LC, increasing the cortical norepinephrine release and the dependence of the P300 upon basal LC activity. Enhancing the signal-to-noise ratio of cortical neurons, norepinephrine may improve the sensory processing, allowing the subject to reach the best discriminative performance with a lower level of neural activation (i.e., a lower P300 amplitude). The study suggests that TNS could be used for improving cognitive performance in patients affected by cognitive disorders or arousal dysfunctions.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2881-2884, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018608

RESUMO

Lack of sensory feedback is one of the main issues contributing to lack of control and embodiment for upper-limb prostheses. Noninvasive nerve stimulation may help amputees overcome such limitations by providing a degree of somatotopic feedback, however its neural correlates have been only partly characterized so far. While the effects of median nerve stimulation have been studied, little attention has been given to ulnar nerve and bipolar stimulation, which might provide a finer modulation of the somatotopic sensation. Here, monopolar and bipolar transcutaneous electrical nerve stimulation (TENS) is repeatedly applied to the ulnar and median nerves and elicited Somatosensory Evoked Potentials (SEPs) are characterized by means of electroencephalography (EEG). Clear P50, P150 and P270 SEPs were outlined, with significantly different amplitudes between configurations. In each case scalp topographies showed a strong contralateral activation in the early phase after the stimulus onset (40-100 ms), compatible with generators in the somatosensory cortex and in accordance to previous literature on actual tactile stimuli, which gives way to a frontal-central distribution at long latencies (130-190 ms). These findings, although needing further validation with a larger pool of subjects, show that bipolar TENS could have potential applications in improving prosthesis control with tactile feedback.


Assuntos
Potenciais Somatossensoriais Evocados , Córtex Somatossensorial , Estimulação Elétrica , Humanos , Nervo Mediano , Extremidade Superior
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3901-3904, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018853

RESUMO

The major challenge in upper limbs neuroprosthetic improvement is the implementation of effective sensory feedback. Transcutaneous electrical nerve stimulation (TENS) of the median and ulnar nerves confirmed, with electroencephalographic (EEG) recordings, the presence of appropriate responses in relevant cortical areas with induced sensation successfully located in the innervation regions of each nerve. The characterization of these elicited responses could be used to recreate precise somatotopic feedback from hand protheses. Using TENS and EEG, the purpose of this study was to detect distinctions in time-frequency cortical dynamics and connectivity occurring after stimulation of hand nerves. Region of interest (ROI) were selected according to topographical distributions and Somatosensory Evoked Potentials (SEP) localization and were named Contralateral Parietal (Cont P), Central Frontal (Cent F) and Superior Parietal (Sup P). The analysis of cortical oscillations showed spectral inflections in theta [4-7 Hz] and alpha [7.5-12.5 Hz] band which occurred at 60 ms in Cont P and 300 ms in Sup P and prominent for the ulnar condition over the median one. The beta band decrease [16-30 Hz] which occurred in the same ROIs was especially significant after ulnar stimulation too. Effective connectivity measures did not differ significantly across conditions but exhibited some slight difference in the alpha-band causal flow coming from Cent F in direction to Cont P and Sup P. Although pending completion of multiple-subjects study, these results already suggest magnitude differences in somatosensory spectral fluctuations and sensorimotor interactions flows.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Eletroencefalografia , Potenciais Somatossensoriais Evocados , Mãos , Nervo Ulnar
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4008-4011, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018878

RESUMO

Research on biosignal (ExG) analysis is usually performed with expensive systems requiring connection with external computers for data processing. Consumer-grade low-cost wearable systems for bio-potential monitoring and embedded processing have been presented recently, but are not considered suitable for medical-grade analyses. This work presents a detailed quantitative comparative analysis of a recently presented fully-wearable low-power and low-cost platform (BioWolf) for ExG acquisition and embedded processing with two researchgrade acquisition systems, namely, ANTNeuro (EEG) and the Noraxon DTS (EMG). Our preliminary results demonstrate that BioWolf offers competitive performance in terms of electrical properties and classification accuracy. This paper also highlights distinctive features of BioWolf, such as real-time embedded processing, improved wearability, and energy-efficiency, which allows devising new types of experiments and usage scenarios for medical-grade biosignal processing in research and future clinical studies.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Estudos de Viabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA