Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 21(1): 35-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25649529

RESUMO

An alpha-zein promoter isolated from maize containing P-box, E motif sequence TGTAAAGT, opaque-2 box and TATA box was studied for its tissue-specific expression in rice. A 1,098 bp promoter region of alpha-zein gene, fused to the upstream of gusA reporter gene was used for transforming rice immature embryos (ASD 16 or IR 64) via the particle bombardment-mediated method. PCR analysis of putative transformants demonstrated the presence of transgenes (the zein promoter, gusA and hpt). Nineteen out of 37 and two out of five events generated from ASD 16 and IR 64 were found to be GUS-positive. A histological staining analysis performed on sections of mature T1 seeds revealed that the GUS expression was limited to the endosperm and not to the pericarp or the endothelial region. GUS expression was observed only in the following seed development stages : milky (14-15 DAF), soft dough (17-18 DAF), hard dough (20-23 DAF), and mature stages (28-30 DAF) of zein-gusA transformed (T0) plants. On the contrary a constitutive expression of GUS was evident in CaMV35S-gusA plants. PCR and Southern blotting analyses on T1 plants demonstrated a stable integration and inheritance of transgene in the subsequent T1 generation. GUS assay on T2 seeds revealed that the expression of gusA gene driven by alpha-zein promoter was stable and tissue-specific over two generations. Results suggest that this alpha-zein promoter could serve as an alternative promoter to drive endosperm-specific expression of transgenes in rice and other cereal transformation experiments.

2.
3 Biotech ; 9(6): 208, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31093478

RESUMO

A full-length cDNA of phyA gene of Aspergillus niger, encoding phytase enzyme, was cloned and expressed in E. coli BL21 cells and assayed for its activity. The phyA cDNA consisted of 1404 bp, which encoded 467 amino acid residues. The phytase activity of purified phytase was 826.33 U/mL. The phyA gene under the control of endosperm-specific promoters was transformed into an Indian maize inbred line, UMI29, using particle bombardment-mediated transformation method to generate transgenic maize plants over-expressing phytase in seeds. PCR and GUS analyses demonstrated the presence of transgenes in T0 transgenic plants and their stable inheritance in the T1 progenies. Three transgenic events expressing detectable level of A. niger phytase were characterized by western blot analysis. Phytase activity of 463.158 U/kg of seed was observed in one of the events, JB-UMI29-Z17/2. The phytase activity of transgenic maize seeds was 5.5- to 7-fold higher than the wild-type UMI29 seeds and, consequently, the seeds had 0.6- to 5-fold higher inorganic phosphorus content.

3.
Curr Top Med Chem ; 13(14): 1666-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23889049

RESUMO

Nature is the world's best chemist: Many naturally occurring compounds have very complicated structures that present great challenges to chemists wishing to determine their structures or replicate them. The plant derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. Their high ligand binding affinity to the target introduce the prospect of their use in chemo preventive applications; in addition they are freely available natural compounds that can be safely used to prevent various ailments. Plants became the basis of traditional medicine system throughout the world for thousands of years and continue to provide mankind with new remedies. Here, we present a research study on a medicinal plant, Graviola, a native of North America but rarely grown in India. It has a wide potent anticancerous agents coined as Acetogenins which play a key role towards many varieties of cancer, Acetogenins are potent inhibitors of NADH oxidase of the plasma membranes of cancer cells. Potent leads were taken for the study through literature survey, major types of cancer targets were identified, the natureceuticals and the cancer protein were subjected to docking analysis, further with the help of the dock score and other descriptor properties top ranked molecules were collected, commercial drug was also selected and identified as a Test compound for the study. Later, the phytochemicals were subjected to toxicity analysis. Those screened compounds were then considered for active site analysis and to find the best binding site for the study. R Programming library was used to find the best leads. Phytochemicals such as Anonaine, Friedelin, Isolaureline, Annonamine, Anomurine, Kaempferol, Asimilobine, Quercetin, Xylopine were clustered and the highly clustered compounds such as Annonamine , Kaempferol termed to be a potential lead for the study. Further study on experimental analysis may prove the potentiality of these compounds. In the experimental analysis, Graviola leaves were collected, and the extracted components were tested against the HeLa cell line and PC3 cell line. HeLa cells treated with 75 µg of a crude leaf extract of A. muricata showing 80% of cell inhibition. Further investigation of other experimental studies may confirm that these potential lead could make a great impact in which it could help to accelerate the pipeline of drug discovery.


Assuntos
Annona/química , Antineoplásicos Fitogênicos/farmacologia , Biologia Computacional , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Modelos Moleculares , Neoplasias/patologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
4.
J Appl Genet ; 51(3): 243-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20720299

RESUMO

We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borer Scirpophaga incertulas (Lepidoptera: Pyralidae). The transgenic indica rice harbours a translational fusion of 2 different Bacillus thuringiensis (Bt) genes, namely cry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an elite indica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the marker hpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3:1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.


Assuntos
Bacillus thuringiensis/genética , Imunidade Inata/genética , Lepidópteros/fisiologia , Oryza/genética , Controle Biológico de Vetores/métodos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio , Southern Blotting , Cruzamentos Genéticos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Vetores Genéticos/genética , Glucuronidase/metabolismo , Padrões de Herança/genética , Mutagênese Insercional/genética , Oryza/parasitologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA