Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genomics ; 116(3): 110841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599255

RESUMO

Muga silkworm (Antheraea assamensis), one of the economically important wild silkmoths, is unique among saturniid silkmoths. It is confined to the North-eastern part of India. Muga silk has the highest value among the other silks. Unlike other silkmoths, A. assamensis has a low chromosome number (n = 15), and ZZ/ZO sex chromosome system. Here, we report the first high-quality draft genome of A. assamensis, assembled by employing the Illumina and PacBio sequencing platforms. The assembled genome of A. assamensis is 501.18 Mb long, with 2697 scaffolds and an N50 of 683.23 Kb. The genome encompasses 18,385 protein-coding genes, 86.29% of which were functionally annotated. Phylogenetic analysis of A. assamensis revealed its divergence from other Antheraea species approximately 28.7 million years ago. Moreover, an investigation into detoxification-related gene families, CYP450, GST, and ABC-transporter, revealed a significant expansion in A. assamensis as compared to the Bombyx mori. This expansion is comparable to Spodoptera litura, suggesting adaptive responses linked to the polyphagous behavior observed in these insects. This study provides valuable insights into the molecular basis of evolutionary divergence and adaptations in muga silkmoth. The genome assembly reported in this study will significantly help in the functional genomics studies on A. assamensis and other Antheraea species along with comparative genomics analyses of Bombycoidea insects.


Assuntos
Genoma de Inseto , Mariposas , Filogenia , Animais , Mariposas/genética , Mariposas/classificação , Sequenciamento Completo do Genoma , Anotação de Sequência Molecular
2.
BMC Genomics ; 24(1): 197, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046210

RESUMO

BACKGROUND: Peepal/Bodhi tree (Ficus religiosa L.) is an important, long-lived keystone ecological species. Communities on the Indian subcontinent have extensively employed the plant in Ayurveda, traditional medicine, and spiritual practices. The Peepal tree is often thought to produce oxygen both during the day and at night by Indian folks. The goal of our research was to produce molecular resources using whole-genome and transcriptome sequencing techniques. RESULTS: The complete genome of the Peepal tree was sequenced using two next-generation sequencers Illumina HiSeq1000 and MGISEQ-2000. We assembled the draft genome of 406 Mb, using a hybrid assembly workflow. The genome annotation resulted in 35,093 protein-coding genes; 53% of its genome consists of repetitive sequences. To understand the physiological pathways in leaf tissues, we analyzed photosynthetically distinct conditions: bright sunny days and nights. The RNA-seq analysis supported the expression of 26,479 unigenes. The leaf transcriptomic analysis of the diurnal and nocturnal periods revealed the expression of the significant number of genes involved in the carbon-fixation pathway. CONCLUSIONS: This study presents a draft hybrid genome assembly for F. religiosa and its functional annotated genes. The genomic and transcriptomic data-derived pathways have been analyzed for future studies on the Peepal tree.


Assuntos
Ficus , Transcriptoma , Perfilação da Expressão Gênica , Genômica , Sequência de Bases , Anotação de Sequência Molecular
3.
Physiol Mol Biol Plants ; 27(7): 1559-1575, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34366597

RESUMO

Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a major fungal disease of tomato (Solanum lycopersicum L.). Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) have been identified as putative negative regulatory genes associated with Fusarium wilt of tomato. Despite their importance as potential genes for developing Fusarium wilt disease tolerance, very little knowledge is available about their expression, cell biology, and functional genomics. Semi-quantitative and quantitative real-time PCR expression analysis of XSP10 and SlSAMT, in this study, revealed higher expression in root and flower tissue respectively in different tomato cultivars viz. Micro-Tom (MT), Arka Vikas (AV), and Arka Abhed (AA). Therefore, the highly up-regulated expression of XSP10 and SlSAMT in biotic stress susceptible tomato cultivar (AV) than a multiple disease resistant cultivar (AA) suggested the disease susceptibility nature of these genes for Fusarium wilt. Sub-cellular localization analysis through the expression of gateway cloning constructs in tomato protoplasts and seedlings showed the predominant localization of XSP10 in the nucleus and SlSAMT at the cytoplasm. A strong in vivo protein-protein interaction of XSP10 with SlSAMT at cytoplasm from bi-molecular fluorescent complementation study suggested that these two proteins function together in regulating responses to Fusarium wilt tolerance in tomato. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01025-y.

4.
Physiol Mol Biol Plants ; 26(5): 857-869, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32377037

RESUMO

The recent global climate change has directly impacted major biotic and abiotic stress factors affecting crop productivity worldwide. Therefore, the need of the hour is to develop sustainable multiple stress tolerant crops through modern biotechnological approaches to cope with climate change. Hybrid proline rich proteins (HyPRPs) are the cell-wall structural proteins, which contain an N-terminal repetitive proline-rich domain and a C-terminal conserved eight-cysteine motif domain. HyPRPs are known to regulate multiple abiotic and biotic stress responses in plants. Recently, a few HyPRPs have been characterized as negative regulators of abiotic and biotic stress responses in different plants. Disruption of such negative regulators for desirable positive phenotypic traits has been made possible through the advent of advanced genome engineering tools. In the past few years, CRISPR/Cas9 has emerged as a novel breakthrough technology for crop improvement by target specific editing of known negative regulatory host genes. Here, we have described the mechanism of action and the role of known HyPRPs in regulating different biotic and abiotic stress responses in major crop plants. We have also discussed the importance of the CRISPR/Cas9 based genome editing system in targeting known negative regulatory HyPRPs for multi-stress crop tolerance using the tomato crop model. Application of genome editing to manipulate the HyPRPs of major crop plants holds promise in developing newer stress management methods in this rapidly changing climate and would lead in the future to sustain crop productivity.

5.
Physiol Mol Biol Plants ; 26(12): 2553-2568, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424164

RESUMO

Owing to rapid global climate change, the occurrence of multiple abiotic stresses is known to influence the outburst of biotic stress factors which affects crop productivity. Therefore, it is essential to understand the molecular and cell biology of key genes associated with multiple stress responses in crop plants. SlHyPRP1 and DEA1, the members of eight-cysteine motif (8CM) family genes have been recently identified as putative regulators of multiple stress responses in tomato (Solanum lycopersicum L.). In order to gain deeper insight into cell and molecular biology of SlHyPRP1 and DEA1, we performed their expression analysis in three tomato cultivars and in vivo cell biological analysis. The semi-quantitative PCR and qRT-PCR results showed the higher expression of SlHyPRP1 and DEA1 in leaf, stem, flower and root tissues as compared to fruit and seed tissues in all three cultivars. The expression levels of SlHyPRP1 and DEA1 were found to be relatively higher in a wilt susceptible tomato cultivar (Arka Vikas) than a multiple disease resistant cultivar (Arka Abhed). In vivo cell biological analysis through Gateway cloning and Bi-FC assay revealed the predominant sub-cellular localization and strong protein-protein interaction of SlHyPRP1 and DEA1 at the cytoplasm and plasma membrane. Moreover, SlHyPRP1 showed in vivo interaction with stress responsive proteins WRKY3 and MST1. Our findings suggest that SlHyPRP1 with DEA1 are co-expressed with tissue specificity and might function together by association with WRKY3 and MST1 in plasma membrane for regulating multiple stress responses in the tomato plant.

6.
Genes (Basel) ; 14(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36833415

RESUMO

Fusarium wilt is a major devastating fungal disease of tomato (Solanum lycopersicum L.) caused by Fusarium oxysporum f. sp. lycopersici (Fol) which reduces the yield and production. Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) are two putative negative regulatory genes associated with Fusarium wilt of tomato. Fusarium wilt tolerance in tomato can be developed by targeting these susceptible (S) genes. Due to its efficiency, high target specificity, and versatility, CRISPR/Cas9 has emerged as one of the most promising techniques for knocking out disease susceptibility genes in a variety of model and agricultural plants to increase tolerance/resistance to various plant diseases in recent years. Though alternative methods, like RNAi, have been attempted to knock down these two S genes in order to confer resistance in tomato against Fusarium wilt, there has been no report of employing the CRISPR/Cas9 system for this specific intent. In this study, we provide a comprehensive downstream analysis of the two S genes via CRISPR/Cas9-mediated editing of single (XSP10 and SlSAMT individually) and dual-gene (XSP10 and SlSAMT simultaneously). Prior to directly advancing on to the generation of stable lines, the editing efficacy of the sgRNA-Cas9 complex was first validated using single cell (protoplast) transformation. In the transient leaf disc assay, the dual-gene editing showed strong phenotypic tolerance to Fusarium wilt disease with INDEL mutations than single-gene editing. In stable genetic transformation of tomato at the GE1 generation, dual-gene CRISPR transformants of XSP10 and SlSAMT primarily exhibited INDEL mutations than single-gene-edited lines. The dual-gene CRISPR-edited lines (CRELs) of XSP10 and SlSAMT at GE1 generation conferred a strong phenotypic tolerance to Fusarium wilt disease compared to single-gene-edited lines. Taken together, the reverse genetic studies in transient and stable lines of tomato revealed that, XSP10 and SlSAMT function together as negative regulators in conferring genetic tolerance to Fusarium wilt disease.


Assuntos
Fusarium , Solanum lycopersicum , Fusarium/genética , Sistemas CRISPR-Cas , Ácido Salicílico/metabolismo , Mutação , Xilema/metabolismo
7.
Gene ; 809: 146049, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34743920

RESUMO

Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice.


Assuntos
Bipolaris/patogenicidade , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
8.
Commun Biol ; 4(1): 286, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674721

RESUMO

Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Comportamento Alimentar , Proteínas de Insetos/metabolismo , Spodoptera/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inativação Metabólica , Proteínas de Insetos/genética , Inseticidas/farmacologia , Larva/genética , Larva/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Interferência de RNA , RNA-Seq , Spodoptera/efeitos dos fármacos , Spodoptera/embriologia , Spodoptera/genética , Fatores de Tempo , Transcriptoma
9.
Commun Biol ; 4(1): 491, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888855

RESUMO

Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-ß-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.


Assuntos
Escamas de Animais/química , Bombyx/química , Proteínas de Insetos/química , Proteínas/química , Asas de Animais/química , Escamas de Animais/efeitos dos fármacos , Animais , Bombyx/efeitos dos fármacos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Asas de Animais/efeitos dos fármacos
10.
Insect Biochem Mol Biol ; 110: 90-97, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009677

RESUMO

Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx mori, another lepidopteran whose CP genes have been well annotated, S. litura has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the CP genes may have been adapted to support the characteristic life style of S. litura, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. litura chromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. mori integrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations.


Assuntos
Genoma de Inseto , Proteínas de Insetos/genética , Anotação de Sequência Molecular , Spodoptera/genética , Animais , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , Spodoptera/crescimento & desenvolvimento , Spodoptera/metabolismo
11.
Science ; 365(6460): 1457-1460, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31467189

RESUMO

In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.


Assuntos
Ceratitis capitata/genética , Genes Ligados ao Cromossomo Y , Processos de Determinação Sexual , Cromossomo Y/genética , Animais , Sequência Conservada , Embrião não Mamífero , Feminino , Genes de Insetos , Masculino , Interferência de RNA
12.
DNA Res ; 25(4): 375-382, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617732

RESUMO

Notwithstanding the rapid developments in sequencing techniques, Y and W sex chromosomes have still been mostly excluded from whole genome sequencing projects due to their high repetitive DNA content. Therefore, Y and W chromosomes are poorly described in most species despite their biological importance. Several methods were developed for identifying Y or W-linked sequences among unmapped scaffolds. However, it is not enough to discover functional regions from short unmapped scaffolds. Here, we provide a new and simple strategy based on k-mer comparison for comprehensive analysis of the W chromosome in Bombyx mori. Using this novel method, we effectively assembled de novo 1281 W-derived genome contigs (totaling 1.9 Mbp), and identified 156 W-linked transcript RNAs and 345 W-linked small RNAs. This method will help in the elucidation of mechanisms of sexual development and exploration of W chromosome biological functions, and provide insights into the evolution of sex chromosomes. Moreover, we showed this method can be employed in identifying heterogametic sex chromosomes (W and Y chromosomes) in many other species where genomic information is still scarce.


Assuntos
Bombyx/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Cromossomos Sexuais , Animais , Cromossomos de Insetos , DNA , Feminino , Masculino , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de RNA
14.
R Soc Open Sci ; 4(7): 170261, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791152

RESUMO

Sex chromosomal dose difference between sexes is often normalized by a gene regulatory mechanism called dosage compensation (DC). Studies indicate that DC mechanisms are generally effective in XY rather than ZW systems. However, DC studies in lepidopterans (ZW system) gave bewildering results. In Manduca sexta, DC was complete and in Plodia interpunctella, it was incomplete. In Heliconius species, dosage was found to be partly incomplete. In domesticated silkmoth Bombyx mori, DC studies have yielded contradictory results thus far, showing incomplete DC based on microarray data and a possible existence of DC based on recent reanalysis of same data. In this study, analysis of B. mori sexed embryos (78, 96 and 120 h) and larval heads using RNA sequencing suggest an onset of DC at 120 h. The average Z-linked expression is substantially less than autosomes, and the male-biased Z-linked expression observed at initial stages (78 and 96 h) gets almost compensated at 120 h embryonic stage and perfectly compensated in heads. Based on these findings, we suggest a complete but an unconventional type of DC, which may be achieved by reduced Z-linked expression in males (ZZ). To our knowledge, this is the first next-generation sequencing report showing DC in B. mori, clarifying the previous contradictions.

15.
Insect Biochem Mol Biol ; 82: 74-82, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28185941

RESUMO

Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for finding genes involved in plant-insect interactions in Lepidoptera and establishing correlations between these genes and vital insect behaviors like host plant selection and courtship for mating.


Assuntos
Bombyx/metabolismo , Células Quimiorreceptoras/metabolismo , Mapeamento Cromossômico , Animais , Bombyx/genética , Feminino , Larva/metabolismo , Masculino
16.
Nat Ecol Evol ; 1(11): 1747-1756, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963452

RESUMO

The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance. A population genetics study indicated that this species expanded throughout southeast Asia by migrating along a South India-South China-Japan axis, adapting to wide-ranging ecological conditions with diverse host plants and insecticides, surviving and adapting with the aid of its expanded detoxification systems. The findings of this study will enable the development of new pest management strategies for the control of major agricultural pests such as S. litura.


Assuntos
Genoma de Inseto , Herbivoria , Inativação Metabólica , Inseticidas/metabolismo , Spodoptera/genética , Adaptação Biológica , Animais , Mapeamento Cromossômico , Dieta , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia , Sequenciamento Completo do Genoma
17.
Insect Biochem Mol Biol ; 75: 32-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260399

RESUMO

Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Processos de Determinação Sexual , Diferenciação Sexual , Dedos de Zinco , Animais , Bombyx/crescimento & desenvolvimento , Feminino , Proteínas de Insetos/metabolismo , Masculino
18.
J Biosci ; 41(2): 283-94, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27240989

RESUMO

Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.


Assuntos
Proteínas de Ligação a DNA/genética , Evolução Molecular , Processos de Determinação Sexual , Transdução de Sinais/genética , Sequência de Aminoácidos , Animais , Abelhas/genética , Abelhas/crescimento & desenvolvimento , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like II/genética , Masculino , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética
19.
Sci Rep ; 5: 12706, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26235912

RESUMO

The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5' and 3' non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230 kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight ß-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel ß-sheets, ß-turns and partial α-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter ß-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster.


Assuntos
Fibroínas/genética , Proteínas de Insetos/genética , Mariposas/genética , Motivos de Aminoácidos , Animais , Sequência de Bases , Fibroínas/química , Fibroínas/metabolismo , Genes , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Mariposas/metabolismo , Filogenia , Alinhamento de Sequência
20.
Sci Data ; 2: 150062, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594380

RESUMO

The silkmoth chorion was studied extensively by F.C. Kafatos' group for almost 40 years. However, the complete structure of the chorion locus was not obtained in the genome sequence of Bombyx mori published in 2008 due to repetitive sequences, resulting in gaps and an incomplete view of the locus. To obtain the complete sequence of the chorion locus, expressed sequence tags (ESTs) derived from follicular epithelium cells were used as probes to screen a bacterial artificial chromosome (BAC) library. Seven BACs were selected to construct a contig which covered the whole chorion locus. By Sanger sequencing, we successfully obtained complete sequences of the chorion locus spanning 871,711 base pairs on chromosome 2, where we annotated 127 chorion genes. The dataset reported here will recruit more researchers to revisit one of the oldest model systems which has been used to study developmentally regulated gene expression. It also provides insights into egg development and fertilization mechanisms and is relevant to applications related to improvements in breeding procedures and transgenesis.


Assuntos
Bombyx/genética , Córion , Genoma de Inseto , Animais , Bombyx/embriologia , Mapeamento Cromossômico , Estruturas Cromossômicas , Cromossomos Artificiais Bacterianos , Etiquetas de Sequências Expressas , Biblioteca Gênica , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA