Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phys Chem Chem Phys ; 21(29): 16230-16239, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298262

RESUMO

Understanding the oxygen evolution reaction (OER) dependence on the reaction environment pH is important to find alternative strategies to define an optimal pH value for high electrocatalytic activity. SrCoO2.5 films with the brownmillerite phase are investigated in this study for their strain effects on the OER activity, with particular regard to the pH dependence. Pulsed laser deposited films with different thicknesses and, thus, strain conditions, are characterized in terms of long range and near-order structural properties and electrochemical OER activity. By comparison, more strained thinner films have smaller OER current at lower pH conditions, but higher sensitivity to the environment pH. Spectroscopic measurements allow us to correlate such behaviors to the Co 3d-O 2p hybridization effects of the CoO6 octahedral sites, which lead to a variation of the 3d level electronic occupation. At the same time, density functional theory calculations show that the oxygen vacancy channels of the CoO4 tetrahedral sites are stable with respect to the strain effects. These results provide new perspectives to manipulate the pH dependent OER activity through the strain effects, useful for designing water splitting-based devices with optimized performances.

2.
Nanotechnology ; 27(37): 375705, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27501526

RESUMO

We report on the characterization of resistive switching devices based on epitaxial CeO2 thin films as a functional material. CeO2 epitaxial thin films were grown by the pulsed laser deposition technique on conductive substrates. Platinum and titanium nitride top electrodes (TE) were successively deposited. Very good performances, in terms of resistivity switching and multilevel operation capability, were obtained using the Pt TE. The dependence of the low resistance and high resistance state on the TE material and on the CeO2 film thickness were explained. The electrical characteristics of these heterostructures make them promising as synapse for neuromorphic computation, but suggest also their use with multi-valued digital systems or multibit memory cells.

3.
Nano Lett ; 15(4): 2343-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25789878

RESUMO

Yttrium-doped barium zirconate (BZY) thin films recently showed surprising electric transport properties. Experimental investigations conducted mainly by electrochemical impedance spectroscopy suggested that a consistent part of this BZY conductivity is of protonic nature. These results have stimulated further investigations by local unconventional techniques. Here, we use electrochemical strain microscopy (ESM) to detect electrochemical activity in BZY films with nanoscale resolution. ESM in a novel cross-sectional measuring setup allows the direct visualization of the interfacial activity. The local electrochemical investigation is compared with the structural studies performed by state of art scanning transmission electron microscopy (STEM). The ESM and STEM results show a clear correlation between the conductivity and the interface structural defects. We propose a physical model based on a misfit dislocation network that introduces a novel 2D transport phenomenon, whose fingerprint is the low activation energy measured.

4.
Nanotechnology ; 26(32): 325302, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26207015

RESUMO

Scanning probe bias techniques have been used as a method to locally dope thin epitaxial films of La(2)CuO(4) (LCO) fabricated by pulsed laser deposition. The local electrochemical oxidation of LCO very efficiently introduces interstitial oxygen defects in the thin film. Details on the influence of the tip voltage bias and environmental conditions on the surface morphology have been investigated. The results show that a local uptake of oxygen occurs in the oxidized films.

5.
ACS Appl Electron Mater ; 6(10): 7135-7144, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39464192

RESUMO

We investigate the ionic mobility in room-temperature RF-sputtered gadolinium doped ceria (GDC) thin films grown on industrial solid oxide fuel cell substrates as a function of the air-annealing at 800 and 1000 °C. The combination of X-ray diffraction, X-ray photoelectron spectroscopy, operando X-ray absorption spectroscopy, and Raman spectroscopy allows us to study the different Ce3+/ Ce4+ ratios induced by the post growth annealing procedure, together with the Ce valence changes induced by different gas atmosphere exposure. Our results give evidence of different kinetics as a function of the annealing temperature, with the sample annealed at 800 °C showing marked changes of the Ce oxidation state when exposed to both reducing and oxidizing gas atmospheres at moderate temperature (300 °C), while the Ce valence is weakly affected for the 1000 °C annealed sample. Raman spectra measurements allow us to trace the responses of the investigated samples to different gas atmospheres on the basis of the presence of different Gd-O bond strengths inside the lattice. These findings provide insight into the microscopic origin of the best performances already observed in SOFCs with a sputtered GDC barrier layer annealed at 800 °C and are fundamental to further improve sputtered GDC thin film performance in energy devices.

6.
Nanoscale ; 16(25): 12237-12247, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38847457

RESUMO

In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.

7.
ACS Appl Mater Interfaces ; 13(1): 541-551, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373206

RESUMO

Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.

8.
ACS Appl Mater Interfaces ; 12(42): 47556-47563, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985188

RESUMO

The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at a high doping level up to x = 0.4, thanks to the good lattice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at the macroscopic and atomic level, respectively. Therefore, in epitaxial thin films, the homogeneous doping can be obtained even with the high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by X-ray photoemission and X-ray absorption show the O 2p band shift toward the Fermi level, which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x = 0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of a high doping level up to x = 0.4.

9.
ACS Appl Mater Interfaces ; 12(7): 8403-8410, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31970987

RESUMO

The integration of lead sulfide quantum dots (QDs) with a high-conductivity material that is compatible with a scalable fabrication is an important route for the applications of QD-based photodetectors. Herein, we first developed a broadband photodetector by combining amorphous ZnO and PbS QDs, forming a heterojunction structure. The photodetector showed detectivity up to 7.9 × 1012 and 4.1 × 1011 jones under 640 and 1310 nm illumination, respectively. The role of the oxygen background pressure in the electronic structure of ZnO films grown by pulsed laser deposition was systematically studied, and it was found to play an important role in the conductivity associated with the variation of the oxygen vacancy concentration. By increasing the oxygen vacancy concentration, the electron mobility of amorphous ZnO layers dramatically increased and the work function decreased, which were beneficial for the photocurrent enhancement of ZnO/PbS QD photodetectors. Our results provide a simple and highly scalable approach to develop broadband photodetectors with high performance.

10.
Nat Commun ; 11(1): 3463, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651374

RESUMO

Understanding the atomistic origin of defects in two-dimensional transition metal dichalcogenides, their impact on the electronic properties, and how to control them is critical for future electronics and optoelectronics. Here, we demonstrate the integration of thermochemical scanning probe lithography (tc-SPL) with a flow-through reactive gas cell to achieve nanoscale control of defects in monolayer MoS2. The tc-SPL produced defects can present either p- or n-type doping on demand, depending on the used gasses, allowing the realization of field effect transistors, and p-n junctions with precise sub-µm spatial control, and a rectification ratio of over 104. Doping and defects formation are elucidated by means of X-Ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory. We find that p-type doping in HCl/H2O atmosphere is related to the rearrangement of sulfur atoms, and the formation of protruding covalent S-S bonds on the surface. Alternatively, local heating MoS2 in N2 produces n-character.

11.
Nanoscale ; 10(17): 8304-8312, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29687826

RESUMO

A large effort is underway to investigate the properties of two-dimensional (2D) materials for their potential to become building blocks in a variety of integrated nanodevices. In particular, the ability to understand the relationship between friction, adhesion, electric charges and defects in 2D materials is of key importance for their assembly and use in nano-electro-mechanical and energy harvesting systems. Here, we report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS2 films for an odd and even number of atomic layers, where odd layers show higher friction and lower work function. Friction force microscopy combined with Kelvin probe force microscopy and X-ray photoelectron spectroscopy demonstrates that an enhanced adsorption of charges and OH molecules is at the origin of the observed increase in friction for 1 and 3 polycrystalline MoS2 layers. In polycrystalline films with an odd number of layers, each crystalline nano-grain carries a dipole due to the MoS2 piezoelectricity, therefore charged molecules adsorb at the grain boundaries all over the surface of the continuous MoS2 film. Their displacement during the sliding of a nano-size tip gives rise to the observed enhanced dissipation and larger nanoscale friction for odd layer-numbers. Similarly, charged adsorbed molecules are responsible for the work function decrease in odd layer-number.

12.
ACS Appl Mater Interfaces ; 9(27): 23099-23106, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613812

RESUMO

We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.

13.
ACS Appl Mater Interfaces ; 8(23): 14613-21, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27192540

RESUMO

Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.

14.
ACS Nano ; 8(12): 12494-501, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25415828

RESUMO

A systematic study by reversible and hysteretic electrochemical strain microscopy (ESM) in samples of cerium oxide with different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in electrical conduction mechanism and related surface activity, such as water adsorption and dissociation with subsequent proton liberation. We have measured the behavior of the reversible hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first-order reversal curve method. The measurements have been performed in much smaller temperature ranges with respect to alternative measuring techniques. Complementing our study with hard X-ray photoemission spectroscopy and irreversible scanning probe measurements, we find that water incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity clearly emerges from all of our experimental results. We find that at lower Sm concentration, proton conduction is prevalent, featured by lower activation energy and higher electrical conductivity. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.

15.
Nanoscale ; 4(1): 91-4, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22024736

RESUMO

TiO(2) anatase thin films grown by pulsed laser deposition are investigated by high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy. The analyses provide evidence of a peculiar growth mode of anatase on LaAlO(3) and SrTiO(3) characterized by the formation of an epitaxial layer at the film/substrate interface, due to cationic diffusion from the substrate into the film region. Pure TiO(2) anatase growth occurs in both specimens above a critical thickness of about 20 nm. The microstructural and chemical characterization of the samples is presented and discussed in the framework of oxide interface engineering.

16.
Adv Mater ; 24(29): 3952-7, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22711448

RESUMO

Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial for establishing the highly debated origin of the 2D electron gas.


Assuntos
Compostos de Alumínio/química , Gases/química , Lantânio/química , Óxidos/química , Estrôncio/química , Titânio/química , Transporte de Elétrons , Elétrons , Íons/química , Microscopia Eletrônica de Transmissão e Varredura , Espectroscopia de Perda de Energia de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA