RESUMO
Insulin gene coding sequence mutations are known to cause mutant INS-gene-induced diabetes of youth (MIDY), yet the cellular pathways needed to prevent misfolded proinsulin accumulation remain incompletely understood. Here, we report that Akita mutant proinsulin forms detergent-insoluble aggregates that entrap wild-type (WT) proinsulin in the endoplasmic reticulum (ER), thereby blocking insulin production. Two distinct quality-control mechanisms operate together to combat this insult: the ER luminal chaperone Grp170 prevents proinsulin aggregation, while the ER membrane morphogenic protein reticulon-3 (RTN3) disposes of aggregates via ER-coupled autophagy (ER-phagy). We show that enhanced RTN-dependent clearance of aggregated Akita proinsulin helps to restore ER export of WT proinsulin, which can promote WT insulin production, potentially alleviating MIDY. We also find that RTN3 participates in the clearance of other mutant prohormone aggregates. Together, these results identify a series of substrates of RTN3-mediated ER-phagy, highlighting RTN3 in the disposal of pathogenic prohormone aggregates.
Assuntos
Proteínas de Transporte/genética , Diabetes Mellitus/genética , Proteínas de Choque Térmico HSP70/genética , Insulina/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proinsulina/genética , Autofagia/genética , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Insulina/biossíntese , Mutação/genética , Proinsulina/biossíntese , Agregados Proteicos/genética , Dobramento de Proteína , RNA Interferente Pequeno/genéticaRESUMO
Recessive mutations in IER3IP1 (immediate early response 3 interacting protein 1) cause a syndrome of microcephaly, epilepsy, and permanent neonatal diabetes (MEDS). IER3IP1 encodes an endoplasmic reticulum (ER) membrane protein, which is crucial for brain development; however, the role of IER3IP1 in ß cells remains unknown. We have generated two mouse models with either constitutive or inducible IER3IP1 deletion in ß cells, named IER3IP1-ßKO and IER3IP1-ißKO, respectively. We found that IER3IP1-ßKO causes severe early-onset, insulin-deficient diabetes. Functional studies revealed a markedly dilated ß-cell ER along with increased proinsulin misfolding and elevated expression of the ER chaperones, including PDI, ERO1, BiP, and P58IPK. Islet transcriptome analysis confirmed by qRT-PCR revealed decreased expression of genes associated with ß-cell maturation, cell cycle, and antiapoptotic genes, accompanied by increased expression of antiproliferation genes. Indeed, multiple independent approaches further demonstrated that IER3IP1-ßKO impaired ß-cell maturation and proliferation, along with increased condensation of ß-cell nuclear chromatin. Inducible ß-cell IER3IP1 deletion in adult (8-wk-old) mice induced a similar diabetic phenotype, suggesting that IER3IP1 is also critical for function and survival even after ß-cell early development. Importantly, IER3IP1 was decreased in ß cells of patients with type 2 diabetes (T2D), suggesting an association of IER3IP1 deficiency with ß-cell dysfunction in the more-common form of diabetes. These data not only uncover a critical role of IER3IP1 in ß cells but also provide insight into molecular basis of diabetes caused by IER3IP1 mutations.
Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Homeostase/genética , Glucose/metabolismoRESUMO
Pancreatic beta cells maintain glucose homeostasis by secreting pulses of insulin in response to a rise in plasma glucose. Pulsatile insulin secretion occurs as a result of glucose-induced oscillations in beta-cell cytosolic Ca2+. The endoplasmic reticulum (ER) helps regulate beta-cell cytosolic Ca2+, and ER stress can lead to ER Ca2+ reduction, beta-cell dysfunction, and an increased risk of type 2 diabetes. However, the mechanistic effects of ER stress on individual calcium channels are not well understood. To determine the effects of tunicamycin-induced ER stress on ER inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) and their involvement in subsequent Ca2+ dysregulation, we treated INS-1 832/13 cells and primary mouse islets with ER stress inducer tunicamycin (TM). We showed TM treatment increased RyR1 mRNA without affecting RyR2 mRNA and decreased both IP3R1 and IP3R3 mRNA. Furthermore, we found stress reduced ER Ca2+ levels, triggered oscillations in cytosolic Ca2+ under subthreshold glucose conditions, and increased apoptosis and that these changes were prevented by cotreatment with the RyR1 inhibitor dantrolene. In addition, we demonstrated silencing RyR1-suppressed TM-induced subthreshold cytosolic Ca2+ oscillations, but silencing RyR2 did not affect these oscillations. In contrast, inhibiting IP3Rs with xestospongin-C failed to suppress the TM-induced cytosolic Ca2+ oscillations and did not protect beta cells from TM-induced apoptosis although xestospongin-C inclusion did prevent ER Ca2+ reduction. Taken together, these results show changes in RyR1 play a critical role in ER stress-induced Ca2+ dysfunction and beta-cell apoptosis.
Assuntos
Sinalização do Cálcio , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Apoptose , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Células Secretoras de Insulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Tunicamicina , Ratos , Linhagem CelularRESUMO
Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic ß-cells remains largely unknown. Here, we first examined ß-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that ß-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.
Assuntos
Células Secretoras de Insulina , Nutrientes , Proinsulina , Humanos , Insulina/biossíntese , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Nutrientes/farmacologia , Proinsulina/biossíntese , Proinsulina/metabolismo , Estresse Fisiológico , Transdução de Sinais , Linhagem Celular , Regulação para CimaRESUMO
AIMS/HYPOTHESIS: Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS: We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (ßS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS: ßS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in ßS2KO islets. Islets isolated from ßS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of ßS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in ßS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION: Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY: RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).
Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Proinsulina/genética , Proinsulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismoRESUMO
Preproinsulin entry into the endoplasmic reticulum yields proinsulin, and its subsequent delivery to the distal secretory pathway leads to processing, storage, and secretion of mature insulin. Multiple groups have reported that treatment of pancreatic beta cell lines, rodent pancreatic islets, or human islets with proteasome inhibitors leads to diminished proinsulin and insulin protein levels, diminished glucose-stimulated insulin secretion, and changes in beta-cell gene expression that ultimately lead to beta-cell death. However, these studies have mostly examined treatment times far beyond that needed to achieve acute proteasomal inhibition. Here, we report that although proteasomal inhibition immediately downregulates new proinsulin biosynthesis, it nevertheless acutely increases beta-cell proinsulin levels in pancreatic beta cell lines, rodent pancreatic islets, and human islets, indicating rescue of a pool of recently synthesized WT INS gene product that would otherwise be routed to proteasomal disposal. Our pharmacological evidence suggests that this disposal most likely reflects ongoing endoplasmic reticulum-associated protein degradation. However, we found that within 60 min after proteasomal inhibition, intracellular proinsulin levels begin to fall in conjunction with increased phosphorylation of eukaryotic initiation factor 2 alpha, which can be inhibited by blocking the general control nonderepressible 2 kinase. Together, these data demonstrate that a meaningful subfraction of newly synthesized INS gene product undergoes rapid proteasomal disposal. We propose that free amino acids derived from proteasomal proteolysis may potentially participate in suppressing general control nonderepressible 2 kinase activity to maintain ongoing proinsulin biosynthesis.
Assuntos
Degradação Associada com o Retículo Endoplasmático , Células Secretoras de Insulina , Ilhotas Pancreáticas , Proinsulina , Complexo de Endopeptidases do Proteassoma , Proteólise , Humanos , Glucose/metabolismo , Células Secretoras de Insulina/enzimologia , Ilhotas Pancreáticas/metabolismo , Proinsulina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress-mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR-CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.
Assuntos
Bócio , Hipotireoidismo , Tireoglobulina , Glândula Tireoide , Animais , Proliferação de Células , Bócio/congênito , Bócio/genética , Bócio/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Camundongos , Ratos , Tireoglobulina/genética , Glândula Tireoide/fisiopatologiaRESUMO
Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and ß-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased â¼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to ß-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.
Assuntos
Insulina/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Diabetes Mellitus/metabolismo , Dissulfetos/metabolismo , Redes Reguladoras de Genes/fisiologia , Células HEK293 , Humanos , Células Secretoras de Insulina/metabolismo , Células MCF-7 , Proinsulina/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Ratos , Receptor de Insulina/metabolismo , Relação Estrutura-AtividadeRESUMO
The conserved endoplasmic reticulum (ER) membrane protein TRAPα (translocon-associated protein, also known as signal sequence receptor 1, SSR1) has been reported to play a critical but unclear role in insulin biosynthesis. TRAPα/SSR1 is one component of a four-protein complex including TRAPß/SSR2, TRAPγ/SSR3, and TRAPδ/SSR4. The TRAP complex topologically has a small exposure on the cytosolic side of the ER via its TRAPγ/SSR3 subunit, whereas TRAPß/SSR2 and TRAPδ/SSR4 function along with TRAPα/SSR1 largely on the luminal side of the ER membrane. Here, we have examined pancreatic ß-cells with deficient expression of either TRAPß/SSR2 or TRAPδ/SSR4, which does not perturb mRNA expression levels of other TRAP subunits, or insulin mRNA. However, deficient protein expression of TRAPß/SSR2 and, to a lesser degree, TRAPδ/SSR4, diminishes the protein levels of other TRAP subunits, concomitant with deficient steady-state levels of proinsulin and insulin. Deficient TRAPß/SSR2 or TRAPδ/SSR4 is not associated with any apparent defect of exocytotic mechanism but rather by a decreased abundance of the proinsulin and insulin that accompanies glucose-stimulated secretion. Amino acid pulse labeling directly establishes that much of the steady-state deficiency of intracellular proinsulin can be accounted for by diminished proinsulin biosynthesis, observed in a pulse-labeling as short as 5 minutes. The proinsulin and insulin levels in TRAPß/SSR2 or TRAPδ/SSR4 null mutant ß-cells are notably recovered upon re-expression of the missing TRAP subunit, accompanying a rebound of proinsulin biosynthesis. Remarkably, overexpression of TRAPα/SSR1 can also suppress defects in ß-cells with diminished expression of TRAPß/SSR2, strongly suggesting that TRAPß/SSR2 is needed to support TRAPα/SSR1 function.
Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Insulina/biossíntese , Insulinoma/patologia , Glicoproteínas de Membrana/deficiência , Proinsulina/biossíntese , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores de Peptídeos/deficiência , Animais , Células Cultivadas , Células Secretoras de Insulina/citologia , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RatosRESUMO
A precondition for efficient proinsulin export from the endoplasmic reticulum (ER) is that proinsulin meets ER quality control folding requirements, including formation of the Cys(B19)-Cys(A20) "interchain" disulfide bond, facilitating formation of the Cys(B7)-Cys(A7) bridge. The third proinsulin disulfide, Cys(A6)-Cys(A11), is not required for anterograde trafficking, i.e., a "lose-A6/A11" mutant [Cys(A6), Cys(A11) both converted to Ser] is well secreted. Nevertheless, an unpaired Cys(A11) can participate in disulfide mispairings, causing ER retention of proinsulin. Among the many missense mutations causing the syndrome of Mutant INS gene-induced Diabetes of Youth (MIDY), all seem to exhibit perturbed proinsulin disulfide bond formation. Here, we have examined a series of seven MIDY mutants [including G(B8)V, Y(B26)C, L(A16)P, H(B5)D, V(B18)A, R(Cpep + 2)C, E(A4)K], six of which are essentially completely blocked in export from the ER in pancreatic ß-cells. Three of these mutants, however, must disrupt the Cys(A6)-Cys(A11) pairing to expose a critical unpaired cysteine thiol perturbation of proinsulin folding and ER export, because when introduced into the proinsulin lose-A6/A11 background, these mutants exhibit native-like disulfide bonding and improved trafficking. This maneuver also ameliorates dominant-negative blockade of export of co-expressed wild-type proinsulin. A growing molecular understanding of proinsulin misfolding may permit allele-specific pharmacological targeting for some MIDY mutants.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proinsulina/metabolismo , Adolescente , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/genética , Dissulfetos/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Mutação de Sentido Incorreto/genética , Proinsulina/genética , Dobramento de ProteínaRESUMO
The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress.
Assuntos
Metabolismo Energético , Compostos de Sulfidrila/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Bioensaio , Biotina/metabolismo , Linhagem Celular , Cisteína/metabolismo , Dissulfetos/metabolismo , Glicólise , Hepatócitos/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Espectrometria de Massas , Análise do Fluxo Metabólico , Mitocôndrias/metabolismo , Oxirredução , Proteoma/metabolismo , Proteômica , Ratos , Sulfetos/metabolismoRESUMO
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.
Assuntos
Hipotireoidismo , Células Epiteliais da Tireoide , Camundongos , Humanos , Animais , Tireoglobulina/metabolismo , Hipotireoidismo/metabolismo , Células Epiteliais da Tireoide/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismoRESUMO
The large secretory glycoprotein thyroglobulin is the primary translation product of thyroid follicular cells. This difficult-to-fold protein is susceptible to structural alterations that disable export of the misfolded thyroglobulin from the endoplasmic reticulum (ER), which is a known cause of congenital hypothyroidism characterized by severe chronic thyrocyte ER stress. Nevertheless, individuals with this disease commonly grow a goiter, indicating thyroid cell survival and adaptation. To model these processes, here we continuously exposed rat PCCL3 thyrocytes to tunicamycin, which causes a significant degree of ER stress that is specifically attributable to thyroglobulin misfolding. We found that, in response, PCCL3 cells down-regulate expression of the "tunicamycin transporter" (major facilitator superfamily domain containing-2A, Mfsd2a). Following CRISPR/Cas9-mediated Mfsd2a deletion, PCCL3 cells could no longer escape the chronic effects of high-dose tunicamycin, as demonstrated by persistent accumulation of unglycosylated thyroglobulin; nevertheless, these thyrocytes survived and grew. A proteomic analysis of these cells adapted to chronic ER protein misfolding revealed many hundreds of up-regulated proteins, indicating stimulation of ER chaperones, oxidoreductases, stress responses, and lipid biosynthesis pathways. Further, we noted increased phospho-AMP-kinase, suggesting up-regulated AMP-kinase activity, and decreased phospho-S6-kinase and protein translation, suggesting decreased mTOR activity. These changes are consistent with conserved cell survival/adaptation pathways. We also observed a less-differentiated thyrocyte phenotype with decreased PAX8, FOXE1, and TPO protein levels, along with decreased thyroglobulin mRNA levels. In summary, we have developed a model of thyrocyte survival and growth during chronic continuous ER stress that recapitulates features of congenital hypothyroid goiter caused by mutant thyroglobulin.
Assuntos
Estresse do Retículo Endoplasmático , Dobramento de Proteína , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sobrevivência Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Simportadores/genética , Simportadores/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tireoglobulina/genéticaRESUMO
Globular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.
Assuntos
Evolução Molecular , Insulina/análogos & derivados , Motivos de Aminoácidos , Animais , Sítios de Ligação , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Células HEK293 , Humanos , Insulina/metabolismo , Insulina/uso terapêutico , Simulação de Dinâmica Molecular , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Ratos , Receptor de Insulina/metabolismo , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock-synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.-Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.-J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP.
Assuntos
Ritmo Circadiano , Proteínas de Choque Térmico/metabolismo , Dobramento de Proteína , Animais , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Homeostase , Camundongos , Camundongos TransgênicosRESUMO
Thyroglobulin (TG) is the most abundant thyroid gland protein, a dimeric iodoglycoprotein (660 kDa). TG serves as the protein precursor in the synthesis of thyroid hormones tetraiodothyronine (T4) and triiodothyronine (T3). The primary site for T3 synthesis in TG involves an iodotyrosine acceptor at the antepenultimate Tyr residue (at the extreme carboxyl terminus of the protein). The carboxyl-terminal region of TG comprises a cholinesterase-like (ChEL) domain followed by a short unique tail sequence. Despite many studies, the monoiodotyrosine donor residue needed for the coupling reaction to create T3 at this evolutionarily conserved site remains unidentified. In this report, we have utilized a novel, convenient immunoblotting assay to detect T3 formation after protein iodination in vitro, enabling the study of T3 formation in recombinant TG secreted from thyrocytes or heterologous cells. With this assay, we confirm the antepenultimate residue of TG as a major T3-forming site, but also demonstrate that the side chain of this residue intimately interacts with the same residue in the apposed monomer of the TG dimer. T3 formation in TG, or the isolated carboxyl-terminal region, is inhibited by mutation of this antepenultimate residue, but we describe the first substitution mutation that actually increases T3 hormonogenesis by engineering a novel cysteine, 10 residues upstream of the antepenultimate residue, allowing for covalent association of the unique tail sequences, and that helps to bring residues Tyr2744 from apposed monomers into closer proximity.
Assuntos
Multimerização Proteica , Tireoglobulina/química , Tri-Iodotironina/química , Animais , Bovinos , Halogenação , Camundongos , Domínios Proteicos , Tireoglobulina/genética , Tireoglobulina/metabolismo , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismoRESUMO
Increasing evidence indicates that many small secretory preproteins can undergo post-translational translocation across the membrane of the endoplasmic reticulum. Although the cellular machinery involved in post-translational translocation of small secretory preproteins has begun to be elucidated, the intrinsic signals contained within these small secretory preproteins that contribute to their efficient post-translational translocation remain unknown. Here, we analyzed the eukaryotic secretory proteome and discovered the small secretory preproteins tend to have a higher probability to harbor the positive charge in the n-region of the signal peptide (SP). Eliminating the positive charge of the n-region blocked post-translational translocation of newly synthesized preproteins and selectively impaired translocation efficiency of small secretory preproteins. The pathophysiological significance of the positive charge in the n-region of SP was underscored by recently identified preproinsulin SP mutations that impair translocation of preproinsulin and cause maturity onset diabetes of youth (MODY). Remarkably, we have found that slowing the polypeptide elongation rate of small secretory preproteins could alleviate the translocation defect caused by loss of the n-region positive charge of the signal peptide. Together, these data reveal not only a previously unrecognized role of the n-region's positive charge in ensuring efficient post-translational translocation of small secretory preproteins, but they also highlight the molecular contribution of defects in this process to the pathogenesis of genetic disorders such as MODY.
Assuntos
Insulina/química , Insulina/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Insulina/genética , Dados de Sequência Molecular , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional , Transporte Proteico , Alinhamento de SequênciaRESUMO
Directed differentiation of human pluripotent stem cells into functional insulin-producing beta-like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non-functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1(+) and subsequent PDX1(+)/NKX6.1(+) pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1(+)/NKX6.1(+) progenitors produces glucose-responsive beta-like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short-term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta-like cells.
Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Células Secretoras de Insulina/fisiologia , Pâncreas/citologia , Animais , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/terapia , Células-Tronco Embrionárias/citologia , Glucose/farmacologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/transplante , Camundongos , Camundongos SCID , Camundongos Transgênicos , EstreptozocinaRESUMO
The thyroid gland secretes primarily tetraiodothyronine (T4), and some triiodothyronine (T3). Under normal physiological circumstances, only one-fifth of circulating T3 is directly released by the thyroid, but in states of hyperactivation of thyroid-stimulating hormone receptors (TSHRs), patients develop a syndrome of relative T3 toxicosis. Thyroidal T4 production results from iodination of thyroglobulin (TG) at residues Tyr5 and Tyr130, whereas thyroidal T3 production may originate in several different ways. In this study, the data demonstrate that within the carboxyl-terminal portion of mouse TG, T3 is formed de novo independently of deiodination from T4 We found that upon iodination in vitro, de novo T3 formation in TG was decreased in mice lacking TSHRs. Conversely, de novo T3 that can be formed upon iodination of TG secreted from PCCL3 (rat thyrocyte) cells was augmented from cells previously exposed to increased TSH, a TSHR agonist, a cAMP analog, or a TSHR-stimulating antibody. We present data suggesting that TSH-stimulated TG phosphorylation contributes to enhanced de novo T3 formation. These effects were reversed within a few days after removal of the hyperstimulating conditions. Indeed, direct exposure of PCCL3 cells to human serum from two patients with Graves' disease, but not control sera, led to secretion of TG with an increased intrinsic ability to form T3 upon in vitro iodination. Furthermore, TG secreted from human thyrocyte cultures hyperstimulated with TSH also showed an increased intrinsic ability to form T3 Our data support the hypothesis that TG processing in the secretory pathway of TSHR-hyperstimulated thyrocytes alters the structure of the iodination substrate in a way that enhances de novo T3 formation, contributing to the relative T3 toxicosis of Graves' disease.
Assuntos
Processamento de Proteína Pós-Traducional , Receptores da Tireotropina/agonistas , Transdução de Sinais , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Tireotropina/metabolismo , Tri-Iodotironina/biossíntese , Animais , Proteínas de Ligação ao Cálcio/agonistas , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas da Matriz Extracelular/agonistas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Doença de Graves/sangue , Doença de Graves/metabolismo , Doença de Graves/patologia , Halogenação , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/patologia , Tirosina/metabolismo , Regulação para CimaRESUMO
Insulin synthesis in pancreatic ß-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic ß-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.