Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Divers ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151697

RESUMO

Recently, there has been a significant increase in the use of deep learning techniques in the molecular sciences, which have shown high performance on datasets and the ability to generalize across data. However, no model has achieved perfect performance in solving all problems, and the pros and cons of each approach remain unclear to those new to the field. Therefore, this paper aims to review deep learning algorithms that have been applied to solve molecular challenges in computational chemistry. We proposed a comprehensive categorization that encompasses two primary approaches; conventional deep learning and geometric deep learning models. This classification takes into account the distinct techniques employed by the algorithms within each approach. We present an up-to-date analysis of these algorithms, emphasizing their key features and open issues. This includes details of input descriptors, datasets used, open-source code availability, task solutions, and actual research applications, focusing on general applications rather than specific ones such as drug discovery. Furthermore, our report discusses trends and future directions in molecular algorithm design, including the input descriptors used for each deep learning model, GPU usage, training and forward processing time, model parameters, the most commonly used datasets, libraries, and optimization schemes. This information aids in identifying the most suitable algorithms for a given task. It also serves as a reference for the datasets and input data frequently used for each algorithm technique. In addition, it provides insights into the benefits and open issues of each technique, and supports the development of novel computational chemistry systems.

2.
Can J Microbiol ; 67(9): 667-676, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081871

RESUMO

Nosocomial infections are an important health problem and cause of complications and death in hospitalized patients. This problem should be solved from the preventive angle, avoiding the spread of infections by designing disinfection methods based on the photocatalytic activity of semiconductor materials such as tin oxide (SnO2). The antimicrobial activity of UV light was tested by using inoculation with Candida albicans ATCC10231 on SnO2 thin films and counting colony forming units (CFU). The interaction of UV light with SnO2 was analyzed by density functional theory (DFT) and the extension to the Hubbard model (DFT+U) schemes to predict the electron behavior at the subatomic level. After exposure to UV light, C. albicans showed a reduction of 36.5% in viable cells, and when SnO2 was included, cell viability was reduced by 60.2%. Measurements of the electronic structure obtained by the first-principle calculations under the DFT and DFT+U schemes showed that the O-p orbitals mediate the oxidation process in the bulk semiconductor. By including the surface effects when cleaving the (1 0 0) plane, the three orbitals O-p, Sn-p, and Sn-s are the mediators. SnO2 films are promising antimicrobial coatings because UV light has a synergic activity with thin films, resulting in faster disinfection.


Assuntos
Anti-Infecciosos , Candida albicans , Antibacterianos , Desinfecção , Humanos , Raios Ultravioleta
3.
Polymers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679251

RESUMO

A functional food as a matrix based on a blend of carbohydrate polymers (25% maltodextrin and 75% inulin) with quercetin and Bacillus claussi to supply antioxidant and probiotic properties was prepared by spray drying. The powders were characterized physiochemically, including by moisture adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), and modulated differential scanning calorimetry (MDSC). The type III adsorption isotherm developed at 35 °C presented a monolayer content of 2.79 g of water for every 100 g of dry sample. The microstructure determined by XRD presented three regions identified as amorphous, semicrystalline, and crystalline-rubbery states. SEM micrographs showed variations in the morphology according to the microstructural regions as (i) spherical particles with smooth surfaces, (ii) a mixture of spherical particles and irregular particles with heterogeneous surfaces, and (iii) agglomerated irregular-shape particles. The blend's functional performance demonstrated antioxidant activities of approximately 50% of DPPH scavenging capacity and viability values of 6.5 Log10 CFU/g. These results demonstrated that the blend displayed functional food behavior over the complete interval of water activities. The equilibrium state diagram was significant for identifying the storage conditions that promote the preservation of functional food properties and those where the collapse of the microstructure occurs.

4.
Biomed Res Int ; 2015: 796456, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075262

RESUMO

Carbon nanotubes (CNTs) are used as carriers in medicine due to their ability to be functionalized with chemical substances. However, cytotoxicity analysis is required prior to use for in vivo models. The aim of this study was to evaluate the cytotoxic effect of CNTs functionalized with a 46 kDa surface protein from Entamoeba histolytica (P46-CNTs) on J774A macrophages. With this purpose, CNTs were synthesized by spray pyrolysis and purified (P-CNTs) using sonication for 48 h. A 46 kDa protein, with a 4.6-5.4 pI range, was isolated from E. histolytica HM1:IMSS strain trophozoites using an OFFGEL system. The P-CNTs were functionalized with the purified 46 kDa protein, classified according to their degree of functionalization, and characterized by Raman and Infrared spectroscopy. In vitro cytotoxicity was evaluated by MTT, apoptosis, and morphological assays. The results demonstrated that P46-CNTs exhibited cytotoxicity dependent upon the functionalized grade. Contrary to what was expected, P46-CNTs with a high grade of functionalization were more toxic to J774 macrophages than P46-CNTs with a low grade of functionalization, than P-CNTs, and had a similar level of toxicity as UP-CNT. This suggests that the nature of the functionalized protein plays a key role in the cytotoxicity of these nanoparticles.


Assuntos
Apoptose/efeitos dos fármacos , Entamoeba histolytica/química , Macrófagos/metabolismo , Nanotubos de Carbono/efeitos adversos , Proteínas de Protozoários/toxicidade , Animais , Linhagem Celular , Macrófagos/patologia , Camundongos , Nanotubos de Carbono/química , Proteínas de Protozoários/química , Proteínas de Protozoários/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA