Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 122914, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000726

RESUMO

Urban air pollution is a critical public health challenge in low-and-middle-income countries (LMICs). At the same time, LMICs tend to be data-poor, lacking adequate infrastructure to monitor air quality (AQ). As LMICs undergo rapid urbanization, the socio-economic burden of poor AQ will be immense. Here we present a globally scalable two-step deep learning (DL) based approach for AQ estimation in LMIC cities that mitigates the need for extensive AQ infrastructure on the ground. We train a DL model that can map satellite imagery to AQ in high-income countries (HICs) with sufficient ground data, and then adapt the model to learn meaningful AQ estimates in LMIC cities using transfer learning. The trained model can explain up to 54% of the variation in the AQ distribution of the target LMIC city without the need for target labels. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned and adapted from two HIC cities, specifically Los Angeles and New York.


Assuntos
Poluição do Ar , Imagens de Satélites , Humanos , Cidades , Aprendizado de Máquina , Gana
2.
Atmosphere (Basel) ; 13(5): 696, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724306

RESUMO

High-spatial-resolution air quality (AQ) mapping is important for identifying pollution sources to facilitate local action. Some of the most populated cities in the world are not equipped with the infrastructure required to monitor AQ levels on the ground and must rely on other sources, like satellite derived estimates, to monitor AQ. Current satellite-data-based models provide AQ mapping on a kilometer scale at best. In this study we focus on producing hundred-meter-scale AQ maps for urban environments in developed cities. We examined the feasibility of an image-based object-detection analysis approach using very high-spatial-resolution (2.5 m) commercial satellite imagery. We fed the satellite imagery to a deep neural network (DNN) to learn the association between visual urban features and air pollutants. The developed model, which solely uses satellite imagery, was tested and evaluated using both ground monitoring observations and land-use regression modeled PM2.5 and NO2 concentrations over London, Vancouver (BC), Los Angeles, and New York City. The results demonstrate a low error with a total RMSE < 2 µg/m3 and highlight the contribution of specific urban features, such as green areas and roads, to continuous hundred-meter-scale AQ estimation. This approach offers promise for scaling to global applications in developed and developing urban environments. Further analysis on domain transferability will enable application of a parsimonious model based merely on satellite images to create hundred-meter-scale AQ maps in developing cities, where current and historical ground data is limited.

3.
Remote Sens (Basel) ; 14(14): 3429, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37719470

RESUMO

High spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to high input data needs of existing estimation approaches. Here we introduce a computer vision method to estimate annual means for air pollution levels from street level images. We used annual mean estimates of NO2 and PM2.5 concentrations from locally calibrated models as labels from London, New York, and Vancouver to allow for compilation of a sufficiently large dataset (~250k images for each city). Our experimental setup is designed to quantify intra and intercity transferability of image-based model estimates. Performances were high and comparable to traditional land-use regression (LUR) and dispersion models when training and testing on images from the same city (R2 values between 0.51 and 0.95 when validated on data from ground monitoring stations). Like LUR models, transferability of models between cities in different geographies is more difficult. Specifically, transferability between the three cities i.e., London, New York, and Vancouver, which have similar pollution source profiles were moderately successful (R2 values between zero and 0.67). Comparatively, performances when transferring models trained on these cities with very different source profiles i.e., Accra in Ghana and Hong Kong were lower (R2 between zero and 0.21) suggesting the need for local calibration with local calibration using additional measurement data from cities that share similar source profiles.

4.
Sci Rep ; 11(1): 6632, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758210

RESUMO

In the wake of climate change, extreme events such as heatwaves are considered to be key players in the terrestrial biosphere. In the past decades, the frequency and severity of heatwaves have risen substantially, and they are projected to continue to intensify in the future. One key question is therefore: how do changes in extreme heatwaves affect the carbon cycle? Although soil respiration (Rs) is the second largest contributor to the carbon cycle, the impacts of heatwaves on Rs have not been fully understood. Using a unique set of continuous high frequency in-situ measurements from our field site, we characterize the relationship between Rs and heatwaves. We further compare the Rs response to heatwaves across ten additional sites spanning the contiguous United States (CONUS). Applying a probabilistic framework, we conclude that during heatwaves Rs rates increase significantly, on average, by ~ 26% relative to that of non-heatwave conditions over the CONUS. Since previous in-situ observations have not measured the Rs response to heatwaves (e.g., rate, amount) at the high frequency that we present here, the terrestrial feedback to the carbon cycle may be underestimated without capturing these high frequency extreme heatwave events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA