Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(30): 9379-9382, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30005574

RESUMO

The formation of giant polyoxometalate (POM) species is relatively underexplored, as their self-assembly process is complex due to the rapid kinetics. Polyoxopalladates (POPds) are a class of POMs based on Pd, the largest of which is the {Pd84}Ac wheel, and its slower kinetics mean the system is more amenable to systematic study. Here, we show that it is possible to follow the assembly of two types of Pd wheels, {Pd84}Gly and the smaller {Pd72}Prop, formed using glycolate and propionate ligands, respectively. We analyzed the formation of {Pd72}Prop and {Pd84}Gly using mass spectrometry (SEC-HPLC-MS and preparative desalting followed by MS). This was accompanied by studies that followed the chemical shift differences between the outer/inner ligands and the free ligand in solution for the {Pd84}Ac, {Pd72}Prop, and {Pd84}Gly species using NMR, which showed it was possible to track the formation of the wheels. Our findings confirm that the macrocycles assemble from smaller building blocks that react together to form the larger species over a period of days. These findings open the way for further structural derivatives and exploration of their host-guest chemistry.

2.
Nat Commun ; 12(1): 3547, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112788

RESUMO

To experimentally test hypotheses about the emergence of living systems from abiotic chemistry, researchers need to be able to run intelligent, automated, and long-term experiments to explore chemical space. Here we report a robotic prebiotic chemist equipped with an automatic sensor system designed for long-term chemical experiments exploring unconstrained multicomponent reactions, which can run autonomously over long periods. The system collects mass spectrometry data from over 10 experiments, with 60 to 150 algorithmically controlled cycles per experiment, running continuously for over 4 weeks. We show that the robot can discover the production of high complexity molecules from simple precursors, as well as deal with the vast amount of data produced by a recursive and unconstrained experiment. This approach represents what we believe to be a necessary step towards the design of new types of Origin of Life experiments that allow testable hypotheses for the emergence of life from prebiotic chemistry.

3.
Life (Basel) ; 10(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110893

RESUMO

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA