Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 93(4): 903-920, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29398135

RESUMO

The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion of Wt1 in adult mice to investigate the mechanisms underlying evolution of glomerulosclerosis. Podocyte apoptosis was evident as early as the fourth day post-induction and increased during disease progression, supporting a role for Wt1 in mature podocyte survival. Podocyte Notch activation was evident at disease onset with upregulation of Notch1 and its transcriptional targets, including Nrarp. There was repression of podocyte FoxC2 and upregulation of Hey2 supporting a role for a Wt1/FoxC2/Notch transcriptional network in mature podocyte injury. The expression of cleaved Notch1 and HES1 proteins in podocytes of mutant mice was confirmed in early disease. Furthermore, induction of podocyte HES1 expression was associated with upregulation of genes implicated in epithelial mesenchymal transition, thereby suggesting that HES1 mediates podocyte EMT. Lastly, early pharmacological inhibition of Notch signaling ameliorated glomerular scarring and albuminuria. Thus, loss of Wt1 in mature podocytes modulates podocyte Notch activation, which could mediate early events in WT1-related glomerulosclerosis.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Receptor Notch1/metabolismo , Proteínas Repressoras/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Glomerulonefrite/genética , Glomerulonefrite/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/patologia , Proteínas/genética , Proteínas/metabolismo , Receptor Notch1/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais , Transcrição Gênica , Proteínas WT1
2.
J Med Genet ; 52(3): 147-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25564561

RESUMO

BACKGROUND: Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. METHODS AND RESULTS: Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. CONCLUSIONS: Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis.


Assuntos
Proteínas Cromossômicas não Histona/genética , Cílios/genética , Genética Médica , Microcefalia/genética , Proteínas dos Microfilamentos/genética , Animais , Centríolos/genética , Cílios/patologia , Exoma/genética , Feminino , Feto , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Microcefalia/patologia , Mutação , Células NIH 3T3 , Linhagem , Gravidez , Peixe-Zebra
3.
Mol Ther ; 22(5): 1008-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24569833

RESUMO

Stem cell therapy is a promising strategy for treatment of muscular dystrophies. In addition to muscle fiber formation, reconstitution of functional stem cell pool by donor cells is vital for long-term treatment. We show here that some CD133(+) cells within human muscle are located underneath the basal lamina of muscle fibers, in the position of the muscle satellite cell. Cultured hCD133(+) cells are heterogeneous and multipotent, capable of forming myotubes and reserve satellite cells in vitro. They contribute to extensive muscle regeneration and satellite cell formation following intramuscular transplantation into irradiated and cryodamaged tibialis anterior muscles of immunodeficient Rag2-/γ chain-/C5-mice. Some donor-derived satellite cells expressed the myogenic regulatory factor MyoD, indicating that they were activated. In addition, when transplanted host muscles were reinjured, there was significantly more newly-regenerated muscle fibers of donor origin in treated than in control, nonreinjured muscles, indicating that hCD133(+) cells had given rise to functional muscle stem cells, which were able to activate in response to injury and contribute to a further round of muscle regeneration. Our findings provide new evidence for the location and characterization of hCD133(+) cells, and highlight that these cells are highly suitable for future clinical application.


Assuntos
Antígenos CD/genética , Terapia Baseada em Transplante de Células e Tecidos , Glicoproteínas/genética , Distrofias Musculares/terapia , Peptídeos/genética , Transplante de Células-Tronco , Antígeno AC133 , Animais , Antígenos CD/biossíntese , Glicoproteínas/biossíntese , Humanos , Camundongos , Distrofias Musculares/genética , Proteína MyoD/biossíntese , Mioblastos/citologia , Mioblastos/imunologia , Mioblastos/metabolismo , Regeneração/genética , Regeneração/imunologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/imunologia , Células Satélites de Músculo Esquelético/metabolismo
4.
Skelet Muscle ; 5: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949786

RESUMO

BACKGROUND: Muscle stem cell transplantation is a possible treatment for muscular dystrophy. In addition to the intrinsic properties of the stem cells, the local and systemic environment plays an important role in determining the fate of the grafted cells. We therefore investigated the effect of modulating the host muscle environment in different ways (irradiation or cryoinjury or a combination of irradiation and cryoinjury) in two immunodeficient mouse strains (mdx nude and recombinase-activating gene (Rag)2-/γ chain-/C5-) on the regenerative capacity of two types of human skeletal muscle-derived stem cell (pericytes and CD133+ cells). METHODS: Human skeletal muscle-derived pericytes or CD133+ cells were transplanted into muscles of either mdx nude or recombinase-activating gene (Rag)2-/γ chain-/C5- host mice. Host muscles were modulated prior to donor cell transplantation by either irradiation, or cryoinjury, or a combination of irradiation and cryoinjury. Muscles were analysed four weeks after transplantation, by staining transverse cryostat sections of grafted muscles with antibodies to human lamin A/C, human spectrin, laminin and Pax 7. The number of nuclei and muscle fibres of donor origin and the number of satellite cells of both host and donor origin were quantified. RESULTS: Within both host strains transplanted intra-muscularly with both donor cell types, there were significantly more nuclei and muscle fibres of donor origin in host muscles that had been modulated by cryoinjury, or irradiation+cryoinjury, than by irradiation alone. Irradiation has no additive effects in further enhancing the transplantation efficiency than cryodamage. Donor pericytes did not give rise to satellite cells. However, using CD133+ cells as donor cells, there were significantly more nuclei, muscle fibres, as well as satellite cells of donor origin in Rag2-/γ chain-/C5- mice than mdx nude mice, when the muscles were injured by either cryodamage or irradiation+cryodamage. CONCLUSIONS: Rag2-/γ chain-/C5- mice are a better recipient mouse strain than mdx nude mice for human muscle stem cell transplantation. Cryodamage of host muscle is the most effective method to enhance the transplantation efficiency of human skeletal muscle stem cells. This study highlights the importance of modulating the muscle environment in preclinical studies to optimise the efficacy of transplanted stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA