Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(8): 961, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37454303

RESUMO

Heavy metals contaminated soils are posing severe threats to food safety worldwide. Heavy metals absorbed by plant roots from contaminated soils lead to severe plant development issues and a reduction in crop yield and growth. The global population is growing, and the demand for food is increasing. Therefore, it is critical to identify soil remediation strategies that are efficient, economical, and environment friendly. The use of biochar and slag as passivators represents a promising approach among various physicochemical and biological strategies due to their efficiency, cost-effectiveness, and low environmental impact. These passivators employ diverse mechanisms to reduce the bioavailability of metals in contaminated soils, thereby improving crop growth and productivity. Although studies have shown the effectiveness of different passivators, further research is needed globally as this field is still in its early stages. This review sheds light on the innovative utilization of biochar and slag as sustainable strategies for heavy metal remediation, emphasizing their novelty and potential for practical applications. Based on the findings, research gaps have been identified and future research directions proposed to enable the full potential of passivators to be utilized effectively and efficiently under controlled and field conditions.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Poluentes do Solo/isolamento & purificação , Metais Pesados/isolamento & purificação , Resíduos Industriais , Solo/química
2.
Int J Phytoremediation ; 21(11): 1098-1103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244330

RESUMO

Biochar is considered a novel soil amendment for cadmium (Cd) stabilization in contaminated soils. A pot experiment was conducted to examine the efficiency of wheat straw and sugarcane bagasse induced biochar on Cd mobility in soil and its bioavailability to spinach in contaminated soil. Soil pH, Cd contents in plant tissues and microbial biomass were examined. Results showed that Cd was significantly decreased by 30.95% and 20.83% with wheat straw and sugarcane bagasse biochar at 2% application rate respectively, relative to the control. Similarly, Cd contents were decreased in plants shoots by 15.41 and 14.33%, while in roots by 48.3 and 35.54%, when wheat straw and sugarcane biochar were added at 2% application rate respectively. Moreover, soil microbial biomass was significantly increased with the application of all biochar types and their applications rates. Finally, wheat straw biochar at 2% application rate can be considered as an effective approach for Cd stabilization in contaminated soils.


Assuntos
Saccharum , Poluentes do Solo , Biodegradação Ambiental , Disponibilidade Biológica , Cádmio , Celulose , Carvão Vegetal , Solo , Spinacia oleracea , Triticum
3.
Environ Pollut ; 326: 121405, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893974

RESUMO

Efficient environmental remediation of toxic chemicals using effective sorbents has received considerable attention recently. For the present study, the synthesis of a red mud/biochar (RM/BC) composite was performed from rice straw with the aim of achieving Pb(II) removal from wastewater. Characterization was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), Zeta potential analysis, elemental mapping, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results showed that RM/BC had higher specific surface area (SBET = 75.37 m2 g-1) than raw biochar (SBET = 35.38 m2 g-1). The Pb(II) removal capacity (qe) of RM/BC was 426.84 mg g-1 at pH 5.0, and the adsorption data well fitted pseudo second order kinetics (R2 = 0.93 and R2 = 0.98), as well as the Langmuir isotherm model (R2 = 0.97 and R2 = 0.98) for both BC and RM/BC. Pb(II) removal was slightly hindered with the increasing strength of co-existing cations (Na+, Cu2+, Fe3+, Ni2+, Cd2+). The increase in temperatures (298 K, 308 K, 318 K) favored Pb(II) removal by RM/BC. Thermodynamic study indicated that Pb(II) adsorption onto BC and RM/BC was spontaneous and primarily governed by chemisorption and surface complexation. A regeneration study revealed the high reusability (>90%) and acceptable stability of RM/BC even after five successive cycles. These findings indicate that RM/BC evidenced special combined characteristics of red mud and biochar, hence its use for Pb removal from wastewater offers a green and environmentally sustainable approach fitting the "waste treating waste" concept.


Assuntos
Oryza , Poluentes Químicos da Água , Águas Residuárias , Chumbo , Adsorção , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Mar Pollut Bull ; 191: 114899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027965

RESUMO

Sustainable and safe management of aquaculture sediments is of great concern. Biochar (BC) and fishpond sediments (FPS) are rich in organic carbon and nutrients and thus can be used as soil amendments; however, it is not fully explored how the biochar amended fishpond sediments can affect soil properties/fertility and modulate plant physiological and biochemical changes, particularly under contamination stress. Therefore, a comprehensive investigation was carried out to explore the effects of FPS and BC-treated FPS (BFPS) on soil and on spinach (Spinacia oleracea L.) grown in chromium (Cr) contaminated soils. Addition of FPS and BFPS to soil caused an increase in nutrients content and reduced Cr levels in soil, which consequently resulted in a significant increase in plant biomass, chlorophyll pigments, and photosynthesis, over the control treatment. The most beneficial effect was observed with the BFPS applied at 35 %, which further increased the antioxidant enzymes (by 2.75-fold, at minimum), soluble sugars by 24.9 %, and upregulated the gene expression activities. However, the same treatment significantly decreased proline content by 74.9 %, Malondialdehyde by 65.6 %, H2O2 by 65.1 %, and Cr concentration in spinach root and shoot tissues. Moreover, the average daily intake analysis showed that BFPS (at 35 %) could effectively reduce human health risks associated with Cr consumption of leafy vegetables. In conclusion, these findings are necessary to provide guidelines for the reutilization of aquaculture sediments as an organic fertilizer and a soil amendment for polluted soils. However, more future field studies are necessary to provide guidelines and codes on aquaculture sediments reutilization as organic fertilizer and soil amendment for polluted soils, aiming for a more sustainable food system in China and globally, with extended benefits to the ecosystem and human.


Assuntos
Poluentes do Solo , Solo , Humanos , Solo/química , Ecossistema , Fertilizantes/análise , Peróxido de Hidrogênio , Carvão Vegetal/química , Cromo/análise , Aquicultura , Poluentes do Solo/análise
5.
Front Plant Sci ; 13: 932861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991444

RESUMO

Nanotechnology has a wide range of applications. Nanotechnology refers to the particle in nanoscale used to improve agricultural productivity and to encounter the unsolved problems conventionally. Nanostructured formulation through mechanisms, such as targeted delivery or slow/controlled release mechanisms as well as conditional release, could release their active ingredients in response to the environmental conditions and biological demands more precisely. Nanotechnology has a great potential for achieving sustainable agriculture, especially in developing countries. Salinity is among the major abiotic stresses which limits the yield and quality of global crops. Zinc (Zn) is a vital micronutrient that is mandatory for the ideal growth of plants and has proved to reduce the hazardous effects of salt stress. To counter the salinity problem, a pot experiment was conducted at wire house of the Institute of Soil and Environmental Sciences (ISES), University of Agriculture, Faisalabad, Pakistan, to observe the effects of zinc oxide (ZnO) nanoparticles (NPs) on wheat variety "Gemmieza" imported from Egypt under salt stress. Notably, 10 dS m-1 salinity was developed artificially, and different doses of Zn conventional fertilizer and ZnO NPs were applied to potted wheat. ZnO NPs (0.12 g pot-1) significantly increased the physical parameters of wheat compared to control under salt stress. Application of ZnO NPs (0.12 g pot-1) significantly increased chlorophyll A and B contents by 24.6 and 10%, plant height at vegetative and maturity stages by 34.6 and 37.4%, shoot and spike lengths by 30.7 and 27.6%, root fresh and dry weights by 74.5 and 63.1%, and wheat grain yield by 42.2%, respectively. ZnO NPs performed better compared to Zn conventional fertilizer under salt stress and could be used in place of Zn conventional fertilizer in salt-affected soils for attaining better crop production.

6.
Bioinorg Chem Appl ; 2022: 6209013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268517

RESUMO

Aqueous solutions containing toxic elements (TEs) (such as hexavalent chromium (Cr (VI)) can be toxic to humans even at trace levels. Thus, removing TEs from the aqueous environment is essential for the protection of biodiversity, hydrosphere ecosystems, and humans. For plant fabrication of zinc oxide nanoparticles (PF-ZnONPs), Azolla pinnata plants were used, and X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), SEM, and FTIR techniques were used for the identification of PF-ZnONPs and ZnONPs, which were used to remove Cr (VI) from aqueous solution. A number of adsorption parameters were studied, including pH, dose, concentration of metal ions, and contact time. The removal efficiency of PF-ZnONPs for Cr (VI) has been found to be 96% at a time (60 min), 69.02% at pH 4, and 70.43% at a dose (10 mg·L-1). It was found that the pseudo-second-order model best described the adsorption of Cr (VI) onto PF-ZnONPs, indicating a fast initial adsorption via diffusion. The experimental data were also highly consistent with the Langmuir isotherm model calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA