Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675286

RESUMO

Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.

2.
Lung Cancer ; 182: 107281, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393758

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) is an effective and safe modality for early-stage lung cancer and lung metastases. However, tumors in an ultra-central location pose unique safety considerations. We performed a systematic review and meta-analysis to summarize the current safety and efficacy data and provide practice recommendations on behalf of the International Stereotactic Radiosurgery Society (ISRS). METHODS: We performed a systematic review using PubMed and EMBASE databases of patients with ultra-central lung tumors treated with SBRT. Studies reporting local control (LC) and/or toxicity were included. Studies with <5 treated lesions, non-English language, re-irradiation, nodal tumors, or mixed outcomes in which ultra-central tumors could not be discerned were excluded. Random-effects meta-analysis was performed for studies reporting relevant endpoints. Meta-regression was conducted to determine the effect of various covariates on the primary outcomes. RESULTS: 602 unique studies were identified of which 27 (one prospective observational, the remainder retrospective) were included, representing 1183 treated targets. All studies defined ultra-central as the planning target volume (PTV) overlapping the proximal bronchial tree (PBT). The most common dose fractionations were 50 Gy/5, 60 Gy/8, and 60 Gy/12 fractions. The pooled 1- and 2-year LC estimates were 92 % and 89 %, respectively. Meta-regression identified biological effective dose (BED10) as a significant predictor of 1-year LC. A total of 109 grade 3-4 toxicity events, with a pooled incidence of 6 %, were reported, most commonly pneumonitis. There were 73 treatment related deaths, with a pooled incidence of 4 %, with the most common being hemoptysis. Anticoagulation, interstitial lung disease, endobronchial tumor, and concomitant targeted therapies were observed risk factors for fatal toxicity events. CONCLUSION: SBRT for ultra-central lung tumors results in acceptable rates of local control, albeit with risks of severe toxicity. Caution should be taken for appropriate patient selection, consideration of concomitant therapies, and radiotherapy plan design.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Pulmonares/patologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Pulmão/patologia , Fracionamento da Dose de Radiação , Estudos Observacionais como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA