Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7699): 113-117, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590092

RESUMO

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Alquilação , Animais , Carboxiliases , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Hidroliases/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas/metabolismo , Ratos , Ratos Wistar , Succinatos/química
2.
Diabetologia ; 66(7): 1340-1352, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37015997

RESUMO

AIMS/HYPOTHESIS: Chronic hyperglycaemia and recurrent hypoglycaemia are independently associated with accelerated cognitive decline in type 1 diabetes. Recurrent hypoglycaemia in rodent models of chemically induced (streptozotocin [STZ]) diabetes leads to cognitive impairment in memory-related tasks associated with hippocampal oxidative damage. This study examined the hypothesis that post-hypoglycaemic hyperglycaemia in STZ-diabetes exacerbates hippocampal oxidative stress and explored potential contributory mechanisms. METHODS: The hyperinsulinaemic glucose clamp technique was used to induce equivalent hypoglycaemia and to control post-hypoglycaemic glucose levels in mice with and without STZ-diabetes and Nrf2-/- mice (lacking Nrf2 [also known as Nfe2l2]). Subsequently, quantitative proteomics based on stable isotope labelling by amino acids in cell culture and biochemical approaches were used to assess oxidative damage and explore contributory pathways. RESULTS: Evidence of hippocampal oxidative damage was most marked in mice with STZ-diabetes exposed to post-hypoglycaemic hyperglycaemia; these mice also showed induction of Nrf2 and the Nrf2 transcriptional targets Sod2 and Hmox-1. In this group, hypoglycaemia induced a significant upregulation of proteins involved in alternative fuel provision, reductive biosynthesis and degradation of damaged proteins, and a significant downregulation of proteins mediating the stress response. Key differences emerged between mice with and without STZ-diabetes following recovery from hypoglycaemia in proteins mediating the stress response and reductive biosynthesis. CONCLUSIONS/INTERPRETATION: There is a disruption of the cellular response to a hypoglycaemic challenge in mice with STZ-induced diabetes that is not seen in wild-type non-diabetic animals. The chronic hyperglycaemia of diabetes and post-hypoglycaemic hyperglycaemia act synergistically to induce oxidative stress and damage in the hippocampus, possibly leading to irreversible damage/modification to proteins or synapses between cells. In conclusion, recurrent hypoglycaemia in sub-optimally controlled diabetes may contribute, at least in part, to accelerated cognitive decline through amplifying oxidative damage in key brain regions, such as the hippocampus. DATA AVAILABILITY: The datasets generated during and/or analysed during the current study are available in ProteomeXchange, accession no. 1-20220824-173727 ( www.proteomexchange.org ). Additional datasets generated during and/or analysed during the present study are available from the corresponding author upon reasonable request.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Hipoglicemia , Camundongos , Animais , Hiperglicemia/metabolismo , Hipoglicemiantes , Diabetes Mellitus Tipo 1/metabolismo , Fator 2 Relacionado a NF-E2/genética , Hipoglicemia/metabolismo , Hipocampo , Estresse Oxidativo , Diabetes Mellitus Experimental/metabolismo , Glicemia/metabolismo
3.
J Sports Sci ; 38(23): 2670-2676, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32686597

RESUMO

Research has suggested that competition within talent identification and development systems should be modified from the adult format of the sport to meet the developmental needs of those participating. Yet limited research has evaluated the success of game changes, particularly the effectiveness of modifying the rules of a game to purposefully engineer changes in player behaviour. The purpose of this study was to monitor the impact of rule modifications on player behaviour within a talent identification and development system in rugby union. Performance indicators (ball in play, pass, offload, kick) were collected during full length (70 min) and shortened durations (30-42 min) of competitive matches played during a weeklong under sixteen rugby union festival in 2016 and after rule modifications were introduced in 2017-2019. The findings indicate that rule modifications had the prescribed impact on player actions, particularly in the shortened duration formats of the game. Therefore, rule modifications provide talent developers a tool to manipulate player behaviour, in this case skill attempts, within full-sided competitive matches.


Assuntos
Aptidão , Comportamento Competitivo , Futebol Americano/legislação & jurisprudência , Adolescente , Tomada de Decisões , Futebol Americano/fisiologia , Humanos , Destreza Motora/fisiologia , Estudos Retrospectivos , Fatores de Tempo
5.
Am J Physiol Endocrinol Metab ; 317(6): E973-E983, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550181

RESUMO

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient (cd44-/-) mice and wild-type littermates (cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44-/- mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44-/- mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44-/- mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44-/- compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44-/- mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44-/- mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Animais , Peso Corporal , Técnica Clamp de Glucose , Receptores de Hialuronatos/metabolismo , Hialuronoglucosaminidase/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos
6.
Diabetes Obes Metab ; 19(7): 997-1005, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28211632

RESUMO

AIM: To test the hypothesis that, given the role of AMP-activated protein kinase (AMPK) in regulating intracellular ATP levels, AMPK may alter ATP release from astrocytes, the main sources of extracellular ATP (eATP) within the brain. MATERIALS AND METHODS: Measurements of ATP release were made from human U373 astrocytoma cells, primary mouse hypothalamic (HTAS) and cortical astrocytes (CRTAS) and wild-type and AMPK α1/α2 null mouse embryonic fibroblasts (MEFs). Cells were treated with drugs known to modulate AMPK activity: A-769662, AICAR and metformin, for up to 3 hours. Intracellular calcium was measured using Fluo4 and Fura-2 calcium-sensitive fluorescent dyes. RESULTS: In U373 cells, A-769662 (100 µM) increased AMPK phosphorylation, whereas AICAR and metformin (1 mM) induced a modest increase or had no effect, respectively. Only A-769662 increased eATP levels, and this was partially blocked by AMPK inhibitor Compound C. A-769662-induced increases in eATP were preserved in AMPK α1/α2 null MEF cells. A-769662 increased intracellular calcium in U373, HTAS and CRTAS cells and chelation of intracellular calcium using BAPTA-AM reduced A-769662-induced eATP levels. A-769662 also increased ATP release from a number of other central and peripheral endocrine cell types. CONCLUSIONS: AMPK is required to maintain basal eATP levels but is not required for A-769662-induced increases in eATP. A-769662 (>50 µM) enhanced intracellular calcium levels leading to ATP release in an AMPK and purinergic receptor independent pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Hipoglicemiantes/farmacologia , Pironas/farmacologia , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Compostos de Bifenilo , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Embrião de Mamíferos/citologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
7.
Mol Cell Proteomics ; 14(3): 596-608, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561500

RESUMO

The lipid raft concept proposes that membrane environments enriched in cholesterol and sphingolipids cluster certain proteins and form platforms to integrate cell signaling. In cardiac muscle, caveolae concentrate signaling molecules and ion transporters, and play a vital role in adrenergic regulation of excitation-contraction coupling, and consequently cardiac contractility. Proteomic analysis of cardiac caveolae is hampered by the presence of contaminants that have sometimes, erroneously, been proposed to be resident in these domains. Here we present the first unbiased analysis of the proteome of cardiac caveolae, and investigate dynamic changes in their protein constituents following adrenoreceptor (AR) stimulation. Rat ventricular myocytes were treated with methyl-ß-cyclodextrin (MßCD) to deplete cholesterol and disrupt caveolae. Buoyant caveolin-enriched microdomains (BCEMs) were prepared from MßCD-treated and control cell lysates using a standard discontinuous sucrose gradient. BCEMs were harvested, pelleted, and resolubilized, then alkylated, digested, and labeled with iTRAQ reagents, and proteins identified by LC-MS/MS on a LTQ Orbitrap Velos Pro. Proteins were defined as BCEM resident if they were consistently depleted from the BCEM fraction following MßCD treatment. Selective activation of α-, ß1-, and ß2-AR prior to preparation of BCEMs was achieved by application of agonist/antagonist pairs for 10 min in populations of field-stimulated myocytes. We typically identified 600-850 proteins per experiment, of which, 249 were defined as high-confidence BCEM residents. Functional annotation clustering indicates cardiac BCEMs are enriched in integrin signaling, guanine nucleotide binding, ion transport, and insulin signaling clusters. Proteins possessing a caveolin binding motif were poorly enriched in BCEMs, suggesting this is not the only mechanism that targets proteins to caveolae. With the notable exception of the cavin family, very few proteins show altered abundance in BCEMs following AR activation, suggesting signaling complexes are preformed in BCEMs to ensure a rapid and high fidelity response to adrenergic stimulation in cardiac muscle.


Assuntos
Agonistas Adrenérgicos/farmacologia , Cavéolas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteoma/isolamento & purificação , Proteômica/métodos , Antagonistas Adrenérgicos/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais , beta-Ciclodextrinas/farmacologia
8.
Proc Natl Acad Sci U S A ; 111(49): 17534-9, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422474

RESUMO

The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼ 120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Fosfoproteínas/química , Aciltransferases , Motivos de Aminoácidos , Animais , Membrana Celular/enzimologia , Cães , Endocitose , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Lipoilação , Camundongos , Miocárdio/metabolismo , Plasticidade Neuronal , Fosfolipídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Sódio/química , Especificidade por Substrato , Sinapses
9.
FASEB J ; 29(11): 4532-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26174834

RESUMO

The electrogenic Na/Ca exchanger (NCX) mediates bidirectional Ca movements that are highly sensitive to changes of Na gradients in many cells. NCX1 is implicated in the pathogenesis of heart failure and a number of cardiac arrhythmias. We measured NCX1 palmitoylation using resin-assisted capture, the subcellular location of yellow fluorescent protein-NCX1 fusion proteins, and NCX1 currents using whole-cell voltage clamping. Rat NCX1 is substantially palmitoylated in all tissues examined. Cysteine 739 in the NCX1 large intracellular loop is necessary and sufficient for NCX1 palmitoylation. Palmitoylation of NCX1 occurs in the Golgi and anchors the NCX1 large regulatory intracellular loop to membranes. Surprisingly, palmitoylation does not influence trafficking or localization of NCX1 to surface membranes, nor does it strongly affect the normal forward or reverse transport modes of NCX1. However, exchangers that cannot be palmitoylated do not inactivate normally (leading to substantial activity in conditions when wild-type exchangers are inactive) and do not promote cargo-dependent endocytosis that internalizes 50% of the cell surface following strong G-protein activation or large Ca transients. The palmitoylated cysteine in NCX1 is found in all vertebrate and some invertebrate NCX homologs. Thus, NCX palmitoylation ubiquitously modulates Ca homeostasis and membrane domain function in cells that express NCX proteins.


Assuntos
Sinalização do Cálcio/fisiologia , Complexo de Golgi/metabolismo , Lipoilação/fisiologia , Microdomínios da Membrana/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Cães , Complexo de Golgi/genética , Masculino , Microdomínios da Membrana/genética , Estrutura Secundária de Proteína , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/genética
10.
Physiology (Bethesda) ; 29(2): 99-107, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24583766

RESUMO

AMP-activated protein kinase appears to have evolved in single-celled eukaryotes as an adenine nucleotide sensor that maintains energy homeostasis at the cellular level. However, during evolution of more complex multicellular organisms, the system has adapted to interact with hormones so that it also plays a key role in balancing energy intake and expenditure at the whole body level.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Hormônios/metabolismo , Humanos
11.
J Autoimmun ; 60: 59-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25975491

RESUMO

Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1ß was the most down-regulated gene. Consistent with this, IL-1ß was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1ß by macrophages derived from the bone marrow of NRF2(-/-) mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Proteínas de Helminto/farmacologia , Interleucina-1beta/biossíntese , Fator 2 Relacionado a NF-E2/genética , Acanthocheilonema/metabolismo , Animais , Artrite Experimental/prevenção & controle , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/prevenção & controle , Colágeno , Gerbillinae , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Articulações/imunologia , Articulações/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/imunologia
12.
Diabetologia ; 57(8): 1684-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24849570

RESUMO

AIMS/HYPOTHESIS: Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. METHODS: Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. RESULTS: In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C2C12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C2C12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). CONCLUSIONS/INTERPRETATION: Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K-protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular , Ceramidas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ratos
13.
Front Sports Act Living ; 6: 1386380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660058

RESUMO

Within the domain of coach education researchers have long called for a paradigm shift, whereby the quality of coaching practice is no longer measured against a checklist of prescribed competencies. This desire to evolve coach education and development, has been aligned to the need to better identify, understand and utilise what adaptive skill and expertise looks, sounds and feels like across specific sport coaching contexts. This paper outlines a broader research plan for the Premier League to drive the progress of research informed practice, in turn shaping a coach development agenda focused on developing adaptive and skilful coaches within Academies. In turn, this is a core feature of the Premier Leagues institutional aim of developing the most skilful coaches in the world. However, in order to begin the process of initiating such a shift in the way things work, there is a need to seek first to understand, before being understood. Therefore, to demonstrate an evidence informed basis to this shift within coach education and development, we ask three questions; (1) Do we understand what the coaches with the highest level of expertise can do? (2) How should we identify coaches with expertise across different contexts? (3) What does coaching expertise research need to do? In answer to these questions, we present the lack of empirical investigation previously conducted in the sports coaching discipline to explore coaching expertise and draw on wider domains to offer possible capacities of skilful coaches who possess expertise. To identify coaches with expertise, coherent with the broader expertise literature, we suggest that this is best conducted via means of social validation. Finally, we offer a road map of investigation designed to explore expertise, formed of a mix of evidence informed methodologies which have not yet been utilised in sport coaching research.

14.
Diabetologia ; 56(9): 2088-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793715

RESUMO

AIMS/HYPOTHESIS: Acute systemic delivery of the sulfonylurea receptor (SUR)-1-specific ATP-sensitive K(+) channel (K(ATP)) opener, NN414, has been reported to amplify glucose counter-regulatory responses (CRRs) in rats exposed to hypoglycaemia. Thus, we determined whether continuous NN414 could prevent hypoglycaemia-induced defective counter-regulation. METHODS: Chronically catheterised male Sprague-Dawley rats received a continuous infusion of NN414 into the third ventricle for 8 days after implantation of osmotic minipumps. Counter-regulation was examined by hyperinsulinaemic-hypoglycaemic clamp on day 8 after three episodes of insulin-induced hypoglycaemia (recurrent hypoglycaemia [RH]) on days 5, 6 and 7. In a subset of rats exposed to RH, NN414 infusion was terminated on day 7 to wash out NN414 before examination of counter-regulation on day 8. To determine whether continuous NN414 exposure altered K(ATP) function, we used the hypothalamic glucose-sensing GT1-7 cell line, which expresses the SUR-1-containing K(ATP) channel. RESULTS: Continuous exposure to NN414 in the setting of RH increased, rather than decreased, the glucose infusion rate (GIR), as exemplified by attenuated adrenaline (epinephrine) secretion. Termination of NN414 on day 7 with subsequent washout for 24 h partially diminished the GIR. The same duration of exposure of GT1-7 cells to NN414 substantially reduced K(ATP) conductance, which was also reversed on washout of the agonist. The suppression of K(ATP) current was not associated with reduced channel subunit mRNA or protein levels. CONCLUSIONS/INTERPRETATION: These data indicate that continuous K(ATP) activation results in suppressed CRRs to hypoglycaemia in vivo, which in vitro is associated with the reversible conversion of KATP into a stable inactive state.


Assuntos
Glucose/metabolismo , Hipotálamo/metabolismo , Canais KATP/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
15.
J Bioenerg Biomembr ; 45(3): 229-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23575945

RESUMO

Glucose-sensing (GS) behaviour in pancreatic ß-cells is dependent on ATP-sensitive K(+) channel (KATP) activity, which is controlled by the relative levels of the KATP ligands ATP and ADP, responsible for closing and opening KATP, respectively. However, the mechanism by which ß-cells transfer energy status from mitochondria to KATP, and hence to altered electrical excitability and insulin secretion, is presently unclear. Recent work has demonstrated a critical role for AMP-activated protein kinase (AMPK) in GS behaviour of cells. Electrophysiological recordings, coupled with measurements of gene and protein expression were made from rat insulinoma cells to investigate whether AMPK activity regulates this energy transfer process. Using the whole-cell recording configuration with sufficient intracellular ATP to keep KATP closed, raised AMPK activity induced GS electrical behaviour. This effect was prevented by the AMPK inhibitor, compound C and required a phosphotransfer process. Indeed, high levels of intracellular phosphocreatine or the presence of the adenylate kinase (AK) inhibitor AP5A blocked this action of AMPK. Using conditions that maximised AMPK-induced KATP opening, there was a significant increase in AK1, AK2 and UCP2 mRNA expression. Thus we propose that KATP opening in response to lowered glucose concentration requires AMPK activity, perhaps in concert with increased AK and UCP2 to enable mitochondrial-derived ADP signals to be transferred to plasma membrane KATP by phosphotransfer cascades.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Secretoras de Insulina/metabolismo , Canais de Potássio/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Linhagem Celular Tumoral , Fosfatos de Dinucleosídeos/farmacologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação/fisiologia , Canais de Potássio/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Proteína Desacopladora 2 , Vasoconstritores/farmacologia
16.
Neurosignals ; 21(1-2): 28-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22456226

RESUMO

Activation of mammalian target of rapamycin 1 (mTORC1) by nutrients, insulin and leptin leads to appetite suppression (anorexia). Contrastingly, increased AMP-activated protein kinase (AMPK) activity by ghrelin promotes appetite (orexia). However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP) mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K)- and protein kinase B (PKB)-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.


Assuntos
Proteína Relacionada com Agouti/biossíntese , Apetite/fisiologia , Hipotálamo/metabolismo , Complexos Multiproteicos/metabolismo , RNA Mensageiro/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anorexia/metabolismo , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL
17.
Biochem J ; 441(1): 285-96, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21880018

RESUMO

Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (ß-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1-/- mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1-/- mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Dieta , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/fisiologia , Obesidade/metabolismo , Adiposidade , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Glicemia , Linhagem Celular , Gorduras na Dieta/efeitos adversos , Glucose/genética , Glucose/metabolismo , Resistência à Insulina , Canais Iônicos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais , Mioblastos/metabolismo , Obesidade/induzido quimicamente , Obesidade/genética , Proteína Desacopladora 1
18.
Front Psychol ; 14: 1154168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457106

RESUMO

Despite significant empirical work in the sport coaching domain, there remains a paucity of evidence to inform practice in high-performance sport coaching. As a result, there are gaps in our understanding regarding coaching expertise at different levels of athlete performance. A significantly underutilized approach in coaching research is Cognitive Task Analysis and it's knowledge elicitation tools. Addressing these concerns, here we utilize applied Cognitive Task Analysis and a semi-structured interview protocol to elicit the cognitive challenges and use of knowledge by a group of N = 7 high-performance endurance sport coaches from a single national governing body. Analysis suggested prominent and ongoing challenges in day-to-day practice which, in turn require significant adaptive skill. In addition, results show how coaches used knowledge flexibly and conditionally to meet the demands of their role. A novel finding being the identification of the use of curriculum knowledge to mentally project the needs of athletes. The findings suggest opportunities for utilizing Cognitive Task Analysis to investigate the cognitive challenges of sport coaching and enhance coach development practice.

19.
Behav Sci (Basel) ; 13(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998671

RESUMO

In this position paper, we start by identifying the issues inherent to coach development; we then consider the current status of coach development and present our position before concluding with key points and suggesting resolutions for the issues. Our intention is to propose the progression of appropriate practices and approaches for the professional development and preparation of coaches. In coach development, a lack of clarity exists at both organisational and individual levels, particularly around the role of and aims for coach developers. Organisationally, we consider a radical reframing required to progress the profession of coach development. We also suggest that many individuals currently involved in coach development do not possess the requisite knowledge to move the field forward. Our aspirations for coach development include recognising the need for expertise and what it looks like in practice. Coaching and coach development interactions should examine particular coaching challenges, concentrating on the thought processes and decision-making strategies necessary to solve them. This necessitates a bespoke, problem-based approach to learning.

20.
Front Sports Act Living ; 5: 1113564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025460

RESUMO

Utilizing cognitive psychology as a foundation, this paper offers a deeper consideration of contemporary theoretical influences on coaching pedagogy. Countering recent dichotomies suggested between pedagogic approaches, we reintroduce key findings from the cognitive tradition and their implications for practice which coaches may find useful. Using cognitive load, novice and expert differences, desirable difficulty, and fidelity, we suggest that the lines drawn between different "pedagogies" may not be as sharp as suggested. Instead, we suggest that coaches avoid defining themselves as being aligned to a specific pedagogical or paradigmatic stance. We conclude by advocating for research informed practice, absent of strict theoretical boundaries and instead, considering contemporary pedagogy as drawing on the needs of the context, the experience of the coach and the best available evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA