Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 86, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418970

RESUMO

BACKGROUND: Approximating the recent phylogeny of N phased haplotypes at a set of variants along the genome is a core problem in modern population genomics and central to performing genome-wide screens for association, selection, introgression, and other signals. The Li & Stephens (LS) model provides a simple yet powerful hidden Markov model for inferring the recent ancestry at a given variant, represented as an N × N distance matrix based on posterior decodings. RESULTS: We provide a high-performance engine to make these posterior decodings readily accessible with minimal pre-processing via an easy to use package kalis, in the statistical programming language R. kalis enables investigators to rapidly resolve the ancestry at loci of interest and developers to build a range of variant-specific ancestral inference pipelines on top. kalis exploits both multi-core parallelism and modern CPU vector instruction sets to enable scaling to hundreds of thousands of genomes. CONCLUSIONS: The resulting distance matrices accessible via kalis enable local ancestry, selection, and association studies in modern large scale genomic datasets.


Assuntos
Genoma , Genômica , Humanos , Cadeias de Markov , Haplótipos , Etnicidade , Genética Populacional
2.
Risk Anal ; 35(9): 1640-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920552

RESUMO

The concept of survival signature has recently been introduced as an alternative to the signature for reliability quantification of systems. While these two concepts are closely related for systems consisting of a single type of component, the survival signature is also suitable for systems with multiple types of component, which is not the case for the signature. This also enables the use of the survival signature for reliability of networks. In this article, we present the use of the survival signature for reliability quantification of systems and networks from a Bayesian perspective. We assume that data are available on tested components that are exchangeable with those in the actual system or network of interest. These data consist of failure times and possibly right-censoring times. We present both a nonparametric and parametric approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA