Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Chem Biol ; 19(2): 198-205, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266349

RESUMO

Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluorescent domains, which upon denaturation formed a discrete population of small aggregates. Combining Förster resonance energy transfer and enzymatic activity measurements provided unprecedented details on the aggregated, unfolded, Hsp70-bound and native MLucV conformations. The Hsp70 mechanism first involved ATP-fueled disaggregation and unfolding of the stable pre-aggregated substrate, which stretched MLucV beyond simply unfolded conformations, followed by native refolding. The ATP-fueled unfolding and refolding action of Hsp70 on MLucV aggregates could accumulate native MLucV species under elevated denaturing temperatures highly adverse to the native state. These results unambiguously exclude binding and preventing of aggregation from the non-equilibrium mechanism by which Hsp70 converts stable aggregates into metastable native proteins.


Assuntos
Proteínas de Choque Térmico HSP70 , Dobramento de Proteína , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Luciferases/metabolismo , Trifosfato de Adenosina , Desnaturação Proteica , Desdobramento de Proteína
2.
Soft Matter ; 20(33): 6595-6607, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39105348

RESUMO

Mechanically bonded membranes of interlocked ring polymers are a significant generalization of conventional elastic sheets, where connectivity is provided by covalent bonding, and represent a promising class of topological meta-materials. In this context, two open questions regard the large-scale reverberations of the heterogeneous composition of the rings and the inequivalent modes of interlocking neighboring rings. We address these questions with Langevin dynamics simulations of chainmails with honeycomb-lattice connectivity, where the rings are block copolymers with two segments of different rigidity. We considered various combinations of the relative lengths of the two segments and the patterns of the over- and under-passes linking neighboring rings. We find that varying ring composition and linking patterns have independent and complementary effects. While the former sets the overall size of the chainmail, the latter defines the shape, enabling the selection of starkly different conformation types. Notably, one of the considered linking patterns favors saddle-shaped membranes, providing a first example of spontaneous negative Gaussian curvature in mechanically bonded sheets. The results help establish the extent to which mechanically bonded membranes can differ from conventional elastic ones, particularly for the achievable shape and size tunability.

3.
Phys Rev Lett ; 124(11): 118102, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242730

RESUMO

The fine interplay between the simultaneous stretching and confinement of amyloid fibrils is probed by combining a microcapillary setup with atomic force microscopy. Single-molecule statistics reveal how the stretching of fibrils changed from force to confinement dominated at different length scales. System order, however, is solely ruled by confinement. Coarse-grained simulations support the results and display the potential to tailor system properties by tuning the two effects. These findings may further help shed light on in vivo amyloid fibril growth and transport in highly confined environments such as blood vessels.


Assuntos
Amiloide/química , Modelos Químicos , Amiloide/metabolismo , Simulação por Computador , Microscopia de Força Atômica/métodos
5.
Langmuir ; 35(16): 5663-5671, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30929450

RESUMO

The present work addresses the effect of partial equilibration and molecular partitioning on the interpretation of release experiments. In this regard, it is shown how release profiles and the values of extracted transport parameters are affected by the time protocol chosen for sample collection by considering a series of experiments where the latter is systematically varied. Caffeine is investigated as a main model drug because of its similar affinity for water and lipids, while monolinolein-based lipid cubic phases are chosen as host matrices because of their wide employment in release studies. Our findings point to a progressive decline in diffusion rate upon increasing the time step, that is, the gap in time between two consecutive pickups, which is a signature of increasing equilibration of caffeine concentration between the lipidic mesophase and the water phase. Furthermore, the amount of released molecules at the first pickup displays negligible changes for large time steps, indicating complete equilibration in such cases. A model is introduced based on Fick's diffusion which goes beyond the assumption of perfect-sink conditions, a common feature of the typical theoretical approaches hitherto developed. The model is shown to account quantitatively for the experimental data and is subsequently employed to clarify the interplay of the adopted release protocol with the various transport parameters in determining the final outcome of the release process. Particularly, two additional molecular drugs are considered, namely glucose and proflavine, which are, respectively, more hydrophilic and hydrophobic than caffeine, thus allowing elucidating the role of molecular partitioning.

6.
J Chem Phys ; 150(9): 094901, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849886

RESUMO

The transport behavior of inverse bicontinuous cubic phases is experimentally investigated as the combined outcome of solute molecular structure and geometrical details of the confining symmetry. Molecular diffusion is discussed in relation to curvature, bottlenecks, and interfacial properties of each cubic phase. Point-like molecules show faster diffusion across the double diamond (Pn3¯m) symmetry, while unfolded macromolecules display better performance inside the double primitive (Im3¯m) cubic phase. The former observation is in agreement with previous simulation work, whereas the latter indicates that dedicated theory needs to be developed for diffusing polymers. Furthermore, the effect of electrostatic interactions is assessed by a study of diffusion of nanoparticles and is rationalized via a combination of simulations and theoretical considerations as the result of a competition between water mobility and geometrical features of the channel.

7.
Angew Chem Int Ed Engl ; 58(22): 7289-7293, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30950540

RESUMO

Water nanoconfinement has important effects on the properties of biomolecules and ultimately on their specific functions. By performing experiments and molecular dynamic simulations, we show how intrinsic nanoconfinement controls the crystallization of small organic molecules converted by enzymatic reactions within the water nanochannels of lipid cubic phases (LCPs). By controlling the nanochannel size, enzymatic reactions in LCPs can be engineered to turn the same converted substrate into its soluble, microcrystal, or needle-like crystal form due to the large variability in water dynamics. Differential scanning calorimetry studies, supported by molecular dynamics simulations, show that most of water within the mesophase nanochannels behaves differently due to interactions with the LCP interface, and that this mechanism has a larger impact for smaller channels. These findings suggest that the amount of free water in the core of the nanochannels is the key factor determining local substrate diffusion and self-assembly within LCPs.


Assuntos
Peroxidase do Rábano Silvestre/metabolismo , Lipídeos/química , Cristais Líquidos/química , Água/química , Cristalização , Difusão , Simulação de Dinâmica Molecular
8.
J Chem Phys ; 148(5): 054902, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29421907

RESUMO

We perform a simulation study of the diffusion of small solutes in the confined domains imposed by inverse bicontinuous cubic phases for the primitive, diamond, and gyroid symmetries common to many lipid/water mesophase systems employed in experiments. For large diffusing domains, the long-time diffusion coefficient shows universal features when the size of the confining domain is renormalized by the Gaussian curvature of the triply periodic minimal surface. When bottlenecks are widely present, they become the most relevant factor for transport, regardless of the connectivity of the cubic phase.

9.
Phys Rev Lett ; 119(3): 037801, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777625

RESUMO

The shape of a polymer plays an important role in its interactions with surrounding molecules. We characterize the shape and the orientational properties of a polymer chain under tension in a good solvent, a physical condition that is often realized both in single-molecule experiments and in vivo. Our findings reveal the existence of hitherto unobserved universal laws encompassing polymers with different rigidities and including the possible presence of excluded-volume effects, showing that both shape and orientation are solely determined by the force contribution to the free energy. In doing so, they also provide a simple way to retrieve these quantities from the knowledge of the force-versus-extension curve.

10.
Langmuir ; 33(14): 3491-3498, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28304174

RESUMO

We present an experimental investigation of the diffusion of unfolded polymers in the triply-periodic water-channel network of inverse bicontinuous cubic phases. Depending on the chain size, our results indicate the presence of two different dynamical regimes corresponding to Zimm and Rouse diffusion. We support our findings by scaling arguments based on a combination of blob and effective-medium theories and suggest the presence of a third regime where dynamics is driven by reptation. Our experimental results also show an increasing behavior of the partition coefficient as a function of the polymer molecular weight, indicative of a reduction in the conformational degrees of freedom induced by the confinement.

11.
J Chem Phys ; 145(8): 084903, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586942

RESUMO

Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties.


Assuntos
Difusão , Lipídeos/química , Modelos Químicos , Glucose/química , Cinética , Cristais Líquidos/química
12.
Phys Rev Lett ; 113(26): 268103, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615390

RESUMO

Amyloid fibrils are ubiquitous proteinaceous aggregates occurring in vivo and in vitro, with an invariant structural fingerprint at the molecular length scale. However, interpretation of their mesoscopic architectures is complicated by diverse observable polymorphic states. We here present a constitutive model for amyloid fibrils based on the minimization of the total energy per fibril. The model is benchmarked on real amyloid fibrils studied by atomic force microscopy. We use multistranded ß-lactoglobulin amyloid fibrils as a model system exhibiting a rich polymorphism. The constitutive model quantitatively recapitulates the main mesoscopic topological features of amyloid fibrils, that is, the evolution of fibril periodicity as a function of the ionic strength of the solution and of the fibril width. A universal mesoscopic structural signature of the fibrils emerges from this picture, predicting a general, parameter-free law for the periodicity of the fibrils, that depends solely on the number of protofilaments per fibril. These predictions are validated experimentally and conclusively highlight the role of competing electrostatic and elastic contributions as the main players in the establishment of amyloid fibrils structure.


Assuntos
Amiloide/química , Modelos Químicos , Cristalização , Elasticidade , Lactoglobulinas/química , Microscopia de Força Atômica , Estrutura Secundária de Proteína , Eletricidade Estática
13.
J Chem Theory Comput ; 20(5): 2261-2272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411091

RESUMO

The response of double-stranded DNA to external mechanical stress plays a central role in its interactions with the protein machinery in the cell. Modern atomistic force fields have been shown to provide highly accurate predictions for the fine structural features of the duplex. In contrast, and despite their pivotal function, less attention has been devoted to the accuracy of the prediction of the elastic parameters. Several reports have addressed the flexibility of double-stranded DNA via all-atom molecular dynamics, yet the collected information is insufficient to have a clear understanding of the relative performance of the various force fields. In this work, we fill this gap by performing a systematic study in which several systems, characterized by different sequence contexts, are simulated with the most popular force fields within the AMBER family, bcs1 and OL15, as well as with CHARMM36. Analysis of our results, together with their comparison with previous work focused on bsc0, allows us to unveil the differences in the predicted rigidity between the newest force fields and suggests a roadmap to test their performance against experiments. In the case of the stretch modulus, we reconcile these differences, showing that a single mapping between sequence-dependent conformation and elasticity via the crookedness parameter captures simultaneously the results of all force fields, supporting the key role of crookedness in the mechanical response of double-stranded DNA.


Assuntos
DNA , Simulação de Dinâmica Molecular , DNA/química , Conformação Molecular , Elasticidade , Estresse Mecânico , Conformação de Ácido Nucleico
14.
J Colloid Interface Sci ; 677(Pt B): 293-302, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39146817

RESUMO

In vitro and in vivo tests for therapeutic agents are typically conducted in sterile environments, but many target areas for drug delivery are home to thousands of microbial species. Here, we examine the behaviour of lipidic nanomaterials after exposure to representative strains of four bacterial species found in the gastrointestinal tract and skin. Small angle X-ray scattering measurements show that the nanostructure of monoolein cubic and inverse hexagonal phases are transformed, respectively, into inverse hexagonal and inverse micellar cubic phases upon exposure to a strain of live Staphylococcus aureus often present on skin and mucosa. Further investigation demonstrates that enzymatic hydrolysis and cell membrane lipid transfer are both likely responsible for this effect. The structural responses to S. aureus are rapid and significantly reduce the rate of drug release from monoolein-based nanomaterials. These findings are the first to demonstrate how a key species in the live human microbiome can trigger changes in the structure and drug release properties of lipidic nanomaterials. The effect appears to be strain specific, varies from patient to patient and body region to body region, and is anticipated to affect the bioapplication of monoglyceride-based formulations.

15.
ACS Nano ; 18(32): 21376-21387, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088237

RESUMO

Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.

16.
Adv Sci (Weinh) ; 11(32): e2402740, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899849

RESUMO

Amyloid polymorphism is a hallmark of almost all amyloid species, yet the mechanisms underlying the formation of amyloid polymorphs and their complex architectures remain elusive. Commonly, two main mesoscopic topologies are found in amyloid polymorphs characterized by non-zero Gaussian and mean curvatures: twisted ribbons and helical fibrils, respectively. Here, a rich heterogeneity of configurations is demonstrated on insulin amyloid fibrils, where protofilament packing can occur, besides the common polymorphs, also in a combined mode forming mixed-curvature polymorphs. Through AFM statistical analysis, an extended array of heterogeneous architectures that are rationalized by mesoscopic theoretical arguments are identified. Notably, an unusual fibrillization pathway is also unraveled toward mixed-curvature polymorphs via the widespread recruitment and intertwining of protofilaments and protofibrils. The results present an original view of amyloid polymorphism and advance the fundamental understanding of the fibrillization mechanism from single protofilaments into mature amyloid fibrils.


Assuntos
Amiloide , Amiloide/química , Amiloide/metabolismo , Microscopia de Força Atômica/métodos , Insulina/química , Insulina/metabolismo , Insulina/genética
17.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839895

RESUMO

Lipid mesophases are being intensively studied as potential candidates for drug-delivery purposes. Extensive experimental characterization has unveiled a wide palette of release features depending on the nature of the host lipids and of the guest molecule, as well as on the environmental conditions. However, only a few simulation works have addressed the matter, which hampers a solid rationalization of the richness of outcomes observed in experiments. Particularly, to date, there are no theoretical works addressing the impact of hydropathy on the transport of a molecule within lipid mesophases, despite the significant fraction of hydrophobic molecules among currently-available drugs. Similarly, the high heterogeneity of water mobility in the nanoscopic channels within lipid mesophases has also been neglected. To fill this gap, we introduce here a minimal model to account for these features in a lamellar geometry, and systematically study the role played by hydropathy and water-mobility heterogeneity by Brownian-dynamics simulations. We unveil a fine interplay between the presence of free-energy barriers, the affinity of the drug for the lipids, and the reduced mobility of water in determining the net molecular transport. More in general, our work is an instance of how multiscale simulations can be fruitfully employed to assist experiments in release systems based on lipid mesophases.

18.
Nanoscale ; 15(14): 6738-6744, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942727

RESUMO

The functioning of double-stranded (ds) nucleic acids (NAs) in cellular processes is strongly mediated by their elastic response. These processes involve proteins that interact with dsDNA or dsRNA and distort their structures. The perturbation of the elasticity of NAs arising from these deformations is not properly considered by most theoretical frameworks. In this work, we introduce a novel method to assess the impact of mechanical stress on the elastic response of dsDNA and dsRNA through the analysis of the fluctuations of the double helix. Application of this approach to atomistic simulations reveals qualitative differences in the force dependence of the mechanical properties of dsDNA with respect to those of dsRNA, which we relate to structural features of these molecules by means of physically-sound minimalistic models.


Assuntos
Ácidos Nucleicos , RNA de Cadeia Dupla , Fenômenos Mecânicos , DNA/química , Elasticidade , Conformação de Ácido Nucleico
19.
J Colloid Interface Sci ; 643: 276-281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37068361

RESUMO

HYPOTHESIS: The forces that govern lipid self-assembly ionic liquids are similar to water, but their different balance can result in unexpected behaviour. EXPERIMENTS: The self-assembly behaviour and phase equilibria of two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in the most common protic ionic liquid, ethylammonium nitrate (EAN) have been investigated as function of composition and temperature by small- and wide-angle X-ray scattering (SAXS/WAXS) and small-angle neutron scattering (SANS). FINDINGS: Both lipids form unusual self-assembly structures and show complex and unexpected phase behaviour unlike that seen in water; DSPC undergoes a gel Lß to crystalline Lc phase transition on warming, while POPC forms worm-like micelles L1 upon dilution. This surprising phase behaviour is attributed to the large size of the EAN ions that solvate the lipid headgroup compared to water changing amphiphile packing. Weaker H-bonding between EAN and lipid headgroups also contributes. These results provide new insight for the design of lipid based nanostructured materials in ionic liquids with atypical properties.

20.
J Chem Theory Comput ; 18(5): 3239-3256, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35394775

RESUMO

We introduce MADna, a sequence-dependent coarse-grained model of double-stranded DNA (dsDNA), where each nucleotide is described by three beads localized at the sugar, at the base moiety, and at the phosphate group, respectively. The sequence dependence is included by considering a step-dependent parametrization of the bonded interactions, which are tuned in order to reproduce the values of key observables obtained from exhaustive atomistic simulations from the literature. The predictions of the model are benchmarked against an independent set of all-atom simulations, showing that it captures with high fidelity the sequence dependence of conformational and elastic features beyond the single step considered in its formulation. A remarkably good agreement with experiments is found for both sequence-averaged and sequence-dependent conformational and elastic features, including the stretching and torsion moduli, the twist-stretch and twist-bend couplings, the persistence length, and the helical pitch. Overall, for the inspected quantities, the model has a precision comparable to atomistic simulations, hence providing a reliable coarse-grained description for the rationalization of single-molecule experiments and the study of cellular processes involving dsDNA. Owing to the simplicity of its formulation, MADna can be straightforwardly included in common simulation engines. Particularly, an implementation of the model in LAMMPS is made available on an online repository to ease its usage within the DNA research community.


Assuntos
DNA , Nucleotídeos , Simulação por Computador , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA