Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 86(18): 1335-1344, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32663894

RESUMO

Since time immemorial, human beings have used various parts of plants in either prevention or treatment of ailments. Plants are rich sources of secondary metabolites such as alkaloids, steroids, terpenoids, flavonoids, and phenolic compounds with a high structural diversity. Many plants/herbs with specific biological activities such as antitumor, antioxidant, anti-inflammatory, antifungal, sedative, and acaricidal activity have been reported. Artemisia nilagirica (C. B. Clarke) Pamp. (Compositae) is a plant traditionally used for insect control in the southern part of India. Previous studies have demonstrated the activity of Artemisia species against pests. The present study thus evaluates the acaricidal activity of crude ethanolic extract of A. nilagirica leaves and its fractions against Rhipicephalus (Boophilus) annulatus. Ticks are ectoparasites that transmit several protozoal, viral, and rickettsial diseases. In south India, R. (B.) annulatus is the commonly observed tick species. Control of these acarine parasites that adversely affect milk and meat production is a tough task. Chemical acaricides such as organophosphates, synthetic pyrethroids, amitraz, and ivermectin are commonly used in tick control. The high cost, environmental hazards, and development of acaricidal resistance are some of the drawbacks of these chemical acaricides. Plant-based formulations are one of the promising approaches for the control of ectoparasites. Previously, extracts from various medicinal/aromatic plants were reported for acaricidal activity from our laboratory, such as Tetrastigma leucostaphylum (Dennst.) Alston, Chassalia curviflora (Wall.) Thwaites, Jatropha curcas L., and Ageratum conyzoides Hieron. Biochemical quantification, fluorescence analysis, and primary phytochemical analysis are already reported for the ethanolic extract and its fractions of areal parts of A. nilagirica. Phytochemical characterization of ethanolic extract of A. nilagirica from Kerala, India was shown to have the presence of terpenoids, flavonoids, steroids, saponins, fixed oils and fats, tannins, and glycosides.


Assuntos
Acaricidas , Artemisia , Rhipicephalus , Acaricidas/farmacologia , Animais , Índia , Extratos Vegetais/farmacologia , Folhas de Planta
2.
RSC Adv ; 12(14): 8815-8832, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424800

RESUMO

Bakuchiol is an emblematic meroterpene class of natural product extracted from Psoralea corylifolia. It has been reported to possess a broad range of biological and pharmacological properties and is considered as a leading biomolecule. It is highly desirable to devise an efficient approach to access bakuchiol and its chemical biology applications. In this review we provided structural features, isolation methods, various chemical routes and late-stage functionalization (LSF) approaches for bakuchiol and its derivatives. Moreover, this review encompasses the structure-activity relationships (SAR), value-added contributions and future perspectives of bakuchiol.

3.
RSC Adv ; 12(17): 10862, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35427048

RESUMO

[This corrects the article DOI: 10.1039/D1RA08771A.].

4.
Environ Technol ; 36(20): 2568-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017547

RESUMO

Two highly efficient (K2CO3/sludge carbon and ZnCl2/sludge carbon) solids were prepared by chemical addition following carbonization at 800 °C and were tested for anaerobic reduction of tartrazine dye in a continuous upflow packed-bed biological reactor, and their performance was compared to that of commercial activated carbon (CAC). The chemical and structural information of the solids was subjected to various characterizations in order to understand the mechanism for anaerobic decolorization, and efficiency for SBCZN800 and SBCPC800 materials was 87% and 74%, respectively, at a short space time (τ) of 2.0 min. A first-order kinetic model fitted the experimental points and kinetic constants of 0.40, 0.92 and 1.46 min(-1) were obtained for SBCZN800, SBCPC800 and CAC, respectively. The experimental results revealed that performance of solids in the anaerobic reduction of tartrazine dye can depend on several factors including chemical agents, carbonization, microbial population, chemical groups and surface chemistry. The Langmuir and Freundlich models are successfully described in the batch adsorption data. Based on these observations, a cost-effective sludge-based catalyst can be produced from harmful sewage sludge for the treatment of industrial effluents.


Assuntos
Corantes/química , Esgotos/microbiologia , Tartrazina/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Anaerobiose , Reatores Biológicos , Corantes/análise , Corantes/metabolismo , Tartrazina/análise , Tartrazina/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
5.
J Hazard Mater ; 300: 406-414, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223014

RESUMO

The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA