Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 193(9): 2964-2982, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34019250

RESUMO

The need for producing renewable fuels from biomass has increased due to depleting fossil resources and environmental concerns. However, the low fraction of biomass carbon converted to product is an undeniable drawback for most current biofuel productions from fermentation due to undecomposed lignin in biomass composition and carbon loss as CO2. In this work, two main production routes of the MixAlco® process, the ketonization route (KR) and esterification route (ER) are evaluated for the mixed alcohol production by brown algae, a third-generation biomass without lignin. A novel fermentation process using syntrophic bacteria consortia (SBC) is developed to produce acetic acid from waste gas produced by KR and ER process. The paper investigates the integrated flowsheet for these alternative routes, using techno-economic and life cycle analysis to compare the minimum selling price and environmental impacts. From TEA, we find that the overall costs for KR and ER are lower than the SBC processes. The cost of ketonization routes is lower than esterification routes. The capital cost and operating cost for the ER+SBC process are the highest. Raw materials and utilities are the two major costs for all the processing routes examined. The MSP for the ER+SBC process is the lowest out of all four routes. ER process performs the best in terms of environmental impacts except in water depletion compared with other processes, while the KR process performs the worst regarding the environmental metrics.


Assuntos
Álcoois/metabolismo , Biocombustíveis , Biomassa , Phaeophyceae/química , Esterificação
2.
Sci Adv ; 5(2): eaav5487, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30746491

RESUMO

We present a strategy to synthesize three types of renewable lubricant base oils with up to 90% yield using 2-alkylfurans, derived from nonfood biomass, and aldehydes, produced from natural oils or biomass through three chemistries: hydroxyalkylation/alkylation (HAA), HAA followed by hydrogenation, and HAA followed by hydrodeoxygenation. These molecules consist of (i) furan rings, (ii) saturated furan rings, and (iii) deoxygenated branched alkanes. The structures of these molecules can be tailored in terms of carbon number, branching length, distance between branches, and functional groups. The site-specific, energy-efficient C-C coupling chemistry in oxygenated biomass compounds, unmatched in current refineries, provides tailored structure and tunable properties. Molecular simulation demonstrates the ability to predict properties in agreement with experiments, proving the potential for molecular design.

3.
ChemSusChem ; 10(12): 2566-2572, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28407438

RESUMO

Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts.


Assuntos
Biotecnologia/métodos , Celulose/química , Biomassa , Glucose/química , Polimerização , Solubilidade , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA