RESUMO
We report several cases of recombination events leading to capsular switching among sequence type (ST) 1 group B Streptococcus strains. These strains otherwise shared a common genome backbone with serotype V ST1 strains. However, the genomes of ST1 serotype V strains and those of serotypes VI, VII, and VIII strains differed substantially.
Assuntos
Cápsulas Bacterianas/genética , Recombinação Genética , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Streptococcus agalactiae/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Ontário/epidemiologia , Filogenia , Vigilância da População , Sorogrupo , Sequenciamento Completo do Genoma , Adulto JovemRESUMO
An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, 2 years after a countrywide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008 to 2013. We also emm typed and sequenced the genomes of all available strains isolated from 2011 to 2013 from iGAS infections and from severe cases of soft tissue infections. We used whole-genome sequencing data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report an increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness, and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of skin or generalist emm types (i.e., emm82, emm87, emm101, emm4, emm83, and emm114) uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few skin and generalist emm types less commonly associated with iGAS in other areas of Ontario.
Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Surtos de Doenças , Genótipo , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Variação Genética , Técnicas de Genotipagem , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Ontário/epidemiologia , Fatores de Risco , Análise de Sequência de DNA , Streptococcus pyogenes/genética , Adulto JovemRESUMO
BACKGROUND: Streptococcus suis is divided into 29 serotypes based on a serological reaction against the capsular polysaccharide (CPS). Multiplex PCR tests targeting the cps locus are also used to determine S. suis serotypes, but they cannot differentiate between serotypes 1 and 14, and between serotypes 2 and 1/2. Here, we developed a pipeline permitting in silico serotype determination from whole-genome sequencing (WGS) short-read data that can readily identify all 29 S. suis serotypes. RESULTS: We sequenced the genomes of 121 strains representing all 29 known S. suis serotypes. We next combined available software into an automated pipeline permitting in silico serotyping of strains by differential alignment of short-read sequencing data to a custom S. suis cps loci database. Strains of serotype pairs 1 and 14, and 2 and 1/2 could be differentiated by a missense mutation in the cpsK gene. We report a 99 % match between coagglutination- and pipeline-determined serotypes for strains in our collection. We used 375 additional S. suis genomes downloaded from the NCBI's Sequence Read Archive (SRA) to validate the pipeline. Validation with SRA WGS data resulted in a 92 % match. Included pipeline subroutines permitted us to assess strain virulence marker content and obtain multilocus sequence typing directly from WGS data. CONCLUSIONS: Our pipeline permits rapid and accurate determination of S. suis serotype, and other lineage information, directly from WGS data. By discriminating between serotypes 1 and 14, and between serotypes 2 and 1/2, our approach solves a three-decade longstanding S. suis typing issue.
Assuntos
Sorogrupo , Sorotipagem , Streptococcus suis/genética , Streptococcus suis/isolamento & purificação , Cápsulas Bacterianas , Proteínas de Bactérias , Sequência de Bases , DNA Bacteriano/genética , Marcação de Genes , Genes Bacterianos , Loci Gênicos , Genoma Bacteriano , Reação em Cadeia da Polimerase Multiplex , Polissacarídeos Bacterianos/classificação , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus suis/classificação , Streptococcus suis/imunologia , Virulência/genética , Fatores de VirulênciaRESUMO
Serotype IV group B Streptococcus (GBS) is emerging in Canada and the United States with rates as high as 5% of the total burden of adult invasive GBS disease. To understand this emergence, we studied the population structure and assessed the antimicrobial susceptibility of serotype IV isolates causing adult invasive infection in Manitoba and Saskatchewan, Canada, between 2010 and 2014. Whole-genome sequencing was used to determine multilocus sequence typing information and identify genes encoding antimicrobial resistance in 85 invasive serotype IV GBS strains. Antimicrobial susceptibility testing was performed by standard methods. Strain divergence was assessed using genome-wide single-nucleotide polymorphism analysis. Serotype IV strains were responsible for 16.9% of adult invasive GBS infections in Manitoba and Saskatchewan during the period. The majority of serotype IV isolates (89%) were clonally related, tetracycline-, erythromycin-, and clindamycin-resistant sequence type 459 (ST459) strains that possessed genes tetM and ermTR. Genome comparisons between ST459 and serotype V ST1 GBS identified several areas of recombination in an overall similar genomic background. Serotype IV ST459 GBS strains are expanding and causing a substantial percentage of adult invasive GBS disease. This emergence may be linked to the acquisition of resistance to tetracycline, macrolides, and lincosamides.
Assuntos
Bacteriemia/epidemiologia , Genótipo , Tipagem de Sequências Multilocus , Infecções Estreptocócicas/epidemiologia , Streptococcus agalactiae/classificação , Streptococcus agalactiae/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Análise por Conglomerados , Farmacorresistência Bacteriana , Feminino , Genoma Bacteriano , Humanos , Masculino , Manitoba/epidemiologia , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Saskatchewan/epidemiologia , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Adulto JovemRESUMO
Typing of group A Streptococcus (GAS) is crucial for infection control and epidemiology. While whole-genome sequencing (WGS) is revolutionizing the way that bacterial organisms are typed, it is necessary to provide backward compatibility with currently used typing schemas to facilitate comparisons and understanding of epidemiological trends. Here, we sequenced the genomes of 191 GAS isolates representing 42 different emm types and used bioinformatics tools to derive commonly used GAS typing information directly from the short-read WGS data. We show that emm typing and multilocus sequence typing can be achieved rapidly and efficiently using this approach, which also permits the determination of the presence or absence of genes associated with GAS tissue tropism. We also report on how the WGS data analysis was instrumental in identifying ambiguities present in the commonly used emm type database hosted by the U.S. Centers for Disease Control and Prevention.
Assuntos
Técnicas de Tipagem Bacteriana/métodos , Genoma Bacteriano , Tipagem de Sequências Multilocus/métodos , Análise de Sequência de DNA/métodos , Streptococcus pyogenes/classificação , Streptococcus pyogenes/genética , Biologia Computacional/métodos , Humanos , Estados UnidosRESUMO
Here, we introduce VLF, an R package to determine the distribution of very low frequency variants (VLFs) in nucleotide and amino acid sequences for the analysis of errors in DNA sequence records. The package allows users to assess VLFs in aligned and trimmed protein-coding sequences by automatically calculating the frequency of nucleotides or amino acids in each sequence position and outputting those that occur under a user-specified frequency (default of p = 0.001). These results can then be used to explore fundamental population genetic and phylogeographic patterns, mechanisms and processes at the microevolutionary level, such as nucleotide and amino acid sequence conservation. Our package extends earlier work pertaining to an implementation of VLF analysis in Microsoft Excel, which was found to be both computationally slow and error prone. We compare those results to our own herein. Results between the two implementations are found to be highly consistent for a large DNA barcode dataset of bird species. Differences in results are readily explained by both manual human error and inadequate Linnean taxonomy (specifically, species synonymy). Here, VLF is also applied to a subset of avian barcodes to assess the extent of biological artifacts at the species level for Canada goose (Branta canadensis), as well as within a large dataset of DNA barcodes for fishes of forensic and regulatory importance. The novelty of VLF and its benefit over the previous implementation include its high level of automation, speed, scalability and ease-of-use, each desirable characteristics which will be extremely valuable as more sequence data are rapidly accumulated in popular reference databases, such as BOLD and GenBank.
RESUMO
BACKGROUND: The number of invasive group A Streptococcus (iGAS) infections due to hitherto extremely rare type emm74 strains has increased in several Canadian provinces since late 2015. We hypothesized that the cases recorded in the different provinces are linked and caused by strains of an emm74 clone that recently emerged and expanded explosively. METHODS: We analyzed both active and passive surveillance data for iGAS infections and used whole-genome sequencing to investigate the phylogenetic relationships of the emm74 strains responsible for these invasive infections country-wide. RESULTS: Genome analysis showed that highly clonal emm74 strains, genetically different from emm74 organisms previously circulating in Canada, were responsible for a country-wide epidemic of >160 invasive disease cases. The emerging clone belonged to multilocus sequence typing ST120. The analysis also revealed dissemination patterns of emm74 subclonal lineages across Canadian provinces. Clinical data analysis indicated that the emm74 epidemic disproportionally affected middle-aged or older male individuals. Homelessness, alcohol abuse, and intravenous drug usage were significantly associated with invasive emm74 infections. CONCLUSIONS: In a period of 20 months, an emm74 GAS clone emerged and rapidly spread across several Canadian provinces located more than 4500 km apart, causing invasive infections primarily among disadvantaged persons.
RESUMO
BACKGROUND: Invasive group A Streptococcus (iGAS) disease caused by type emm89 strains has been increasing worldwide, driven by the emergence of an epidemic clonal variant (clade 3 emm89). The clinical characteristics of patients with emm89 iGAS disease, and in particular with clade 3 emm89 iGAS disease, are poorly described. METHODS: We used population-based iGAS surveillance data collected in metropolitan Toronto, Ontario, Canada during the period 2000-2014. We sequenced the genomes of 105 emm89 isolates representing all emm89 iGAS disease cases in the area during the period and 138 temporally matched emm89 iGAS isolates collected elsewhere in Ontario. RESULTS: Clades 1 and 2 and clade O, a newly discovered emm89 genetic variant, caused most cases of emm89 iGAS disease in metropolitan Toronto before 2008. After rapid emergence of new clade 3, previously circulating clades were purged from the population and the incidence of emm89 iGAS disease significantly increased from 0.14 per 100000 in 2000-2007 to 0.22 per 100000 in 2008-2014. Overall, emm89 organisms caused significantly more arthritis but less necrotizing fasciitis than strains of the more common type emm1. Other clinical presentations were soft tissue and severe respiratory tract infections. Clinical outcomes did not differ significantly between emm89 clades overall. However, clade 3 emm89 iGAS disease was more common in youth and middle-aged individuals. CONCLUSIONS: The rapid shift in emm89 iGAS strain genetics in metropolitan Toronto has resulted in a significant increase in the incidence of emm89 iGAS disease, with noticeably higher rates of clade 3 disease in younger patients.
RESUMO
PURPOSE: Pili contribute significantly to the pathogenesis of infection of group B Streptococcus (GBS) by facilitating adhesion and invasion of host cells. GBS pilin subunits (the backbone pilin protein, BP, and the ancillary pilin proteins, AP) as well as the specific enzymes required for pilus assembly are encoded by genes located in two separate genomic regions, known as pilus island 1 (PI-1) and PI-2. Our aim was to characterize the pilus profile of a collection of GBS isolates from metropolitan Toronto, Canada. METHODOLOGY: The pilus profile of 1332 invasive and colonizing GBS isolates was determined by PCR and, in selected cases, by whole genome sequencing. RESULTS: While investigating the pilus profile of a collection of GBS organisms, we discovered that 51 isolates possessed a novel variant of the PI-1 BP, which we named BP-1b. The predicted translated sequences of archetypical GBS BP-1 and novel BP-1b variants shared only 63â% amino acid sequence homology. The novel BP-1b variant was most common among strains of serotype Ib and VI, but was also found among strains of serotypes Ia, II, III and VIII. CONCLUSION: We describe a relatively frequent occurrence of a novel PI-1 BP that cannot be detected by a commonly used multiplex PCR scheme, which could lead to strains being mistyped as PI-1 negative. We present PCR primers that can easily be incorporated into the multiplex PCR assay to identify strains with novel BP-1b variant.
Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Variação Genética , Família Multigênica , Streptococcus agalactiae/genética , Transcriptoma , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/metabolismoRESUMO
The capsular polysaccharide (CPS) is the major virulence factor of the emerging zoonotic pathogen Streptococcus suis. CPS differences are also the basis for serological differentiation of the species into 29 serotypes. Serotypes 2 and 1/2, which possess identical gene content in their cps loci, express CPSs that differ only by substitution of galactose (Gal) by N-acetylgalactosamine (GalNAc) in the CPS side chain. The same sugar substitution differentiates the CPS of serotypes 14 and 1, whose cps loci are also identical in gene content. Here, using mutagenesis, CPS structural analysis, and protein structure modeling, we report that a single amino acid polymorphism in the glycosyltransferase CpsK defines the enzyme substrate predilection for Gal or GalNAc and therefore determines CPS composition, structure, and strain serotype. We also show that the different CPS structures have similar antiphagocytic properties and that serotype switching has limited impact on the virulence of S. suis.
Assuntos
Substituição de Aminoácidos , Glicosiltransferases/genética , Polimorfismo Genético , Streptococcus suis/classificação , Streptococcus suis/genética , Alelos , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Sorogrupo , VirulênciaRESUMO
Recently, we reported the purification and characterization of three distinct lantibiotics (named suicin 90-1330, suicin 3908, and suicin 65) produced by Streptococcus suis. In this study, we investigated the distribution of the three suicin lantibiotic gene clusters among serotype 2 S. suis strains belonging to sequence type (ST) 25 and ST28, the two dominant STs identified in North America. The genomes of 102 strains were interrogated for the presence of suicin gene clusters encoding suicins 90-1330, 3908, and 65. The gene cluster encoding suicin 65 was the most prevalent and mainly found among ST25 strains. In contrast, none of the genes related to suicin 90-1330 production were identified in 51 ST25 strains nor in 35/51 ST28 strains. However, the complete suicin 90-1330 gene cluster was found in ten ST28 strains, although some genes in the cluster were truncated in three of these isolates. The vast majority (101/102) of S. suis strains did not possess any of the genes encoding suicin 3908. In conclusion, this study indicates heterogeneous distribution of suicin genes in S. suis.
Assuntos
Proteínas de Bactérias/genética , Bacteriocinas/genética , Infecções Estreptocócicas/genética , Streptococcus suis/genética , Animais , Bacteriocinas/biossíntese , Genoma Bacteriano , Família Multigênica , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , SuínosRESUMO
Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Elementos de DNA Transponíveis , Ordem dos Genes , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Sorogrupo , Streptococcus suis/classificaçãoRESUMO
Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region.
RESUMO
Shiga toxin-producing Escherichia coli strains are worldwide associated with sporadic human infections and outbreaks. In this work, we report the availability of high-quality draft whole-genome sequences for 19 O157:H7 strains isolated in Argentina.
RESUMO
Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.
Assuntos
Proteínas de Bactérias/genética , Endocardite/veterinária , Genoma Bacteriano , Fenótipo , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Doenças dos Suínos/microbiologia , Animais , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Células Clonais , Hibridização Genômica Comparativa , Endocardite/microbiologia , Endocardite/patologia , Expressão Gênica , Teste de Complementação Genética , Mutação INDEL , Sequências Repetitivas Dispersas , Família Multigênica , Taxa de Mutação , Filogenia , Análise de Sequência de DNA , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus suis/classificação , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/patologia , VirulênciaRESUMO
Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.